This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isores1 | |- ( H Isom R , S ( A , B ) <-> H Isom ( R i^i ( A X. A ) ) , S ( A , B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isocnv | |- ( H Isom R , S ( A , B ) -> `' H Isom S , R ( B , A ) ) |
|
| 2 | isores2 | |- ( `' H Isom S , R ( B , A ) <-> `' H Isom S , ( R i^i ( A X. A ) ) ( B , A ) ) |
|
| 3 | 1 2 | sylib | |- ( H Isom R , S ( A , B ) -> `' H Isom S , ( R i^i ( A X. A ) ) ( B , A ) ) |
| 4 | isocnv | |- ( `' H Isom S , ( R i^i ( A X. A ) ) ( B , A ) -> `' `' H Isom ( R i^i ( A X. A ) ) , S ( A , B ) ) |
|
| 5 | 3 4 | syl | |- ( H Isom R , S ( A , B ) -> `' `' H Isom ( R i^i ( A X. A ) ) , S ( A , B ) ) |
| 6 | isof1o | |- ( H Isom R , S ( A , B ) -> H : A -1-1-onto-> B ) |
|
| 7 | f1orel | |- ( H : A -1-1-onto-> B -> Rel H ) |
|
| 8 | dfrel2 | |- ( Rel H <-> `' `' H = H ) |
|
| 9 | isoeq1 | |- ( `' `' H = H -> ( `' `' H Isom ( R i^i ( A X. A ) ) , S ( A , B ) <-> H Isom ( R i^i ( A X. A ) ) , S ( A , B ) ) ) |
|
| 10 | 8 9 | sylbi | |- ( Rel H -> ( `' `' H Isom ( R i^i ( A X. A ) ) , S ( A , B ) <-> H Isom ( R i^i ( A X. A ) ) , S ( A , B ) ) ) |
| 11 | 6 7 10 | 3syl | |- ( H Isom R , S ( A , B ) -> ( `' `' H Isom ( R i^i ( A X. A ) ) , S ( A , B ) <-> H Isom ( R i^i ( A X. A ) ) , S ( A , B ) ) ) |
| 12 | 5 11 | mpbid | |- ( H Isom R , S ( A , B ) -> H Isom ( R i^i ( A X. A ) ) , S ( A , B ) ) |
| 13 | isocnv | |- ( H Isom ( R i^i ( A X. A ) ) , S ( A , B ) -> `' H Isom S , ( R i^i ( A X. A ) ) ( B , A ) ) |
|
| 14 | 13 2 | sylibr | |- ( H Isom ( R i^i ( A X. A ) ) , S ( A , B ) -> `' H Isom S , R ( B , A ) ) |
| 15 | isocnv | |- ( `' H Isom S , R ( B , A ) -> `' `' H Isom R , S ( A , B ) ) |
|
| 16 | 14 15 | syl | |- ( H Isom ( R i^i ( A X. A ) ) , S ( A , B ) -> `' `' H Isom R , S ( A , B ) ) |
| 17 | isof1o | |- ( H Isom ( R i^i ( A X. A ) ) , S ( A , B ) -> H : A -1-1-onto-> B ) |
|
| 18 | isoeq1 | |- ( `' `' H = H -> ( `' `' H Isom R , S ( A , B ) <-> H Isom R , S ( A , B ) ) ) |
|
| 19 | 8 18 | sylbi | |- ( Rel H -> ( `' `' H Isom R , S ( A , B ) <-> H Isom R , S ( A , B ) ) ) |
| 20 | 17 7 19 | 3syl | |- ( H Isom ( R i^i ( A X. A ) ) , S ( A , B ) -> ( `' `' H Isom R , S ( A , B ) <-> H Isom R , S ( A , B ) ) ) |
| 21 | 16 20 | mpbid | |- ( H Isom ( R i^i ( A X. A ) ) , S ( A , B ) -> H Isom R , S ( A , B ) ) |
| 22 | 12 21 | impbii | |- ( H Isom R , S ( A , B ) <-> H Isom ( R i^i ( A X. A ) ) , S ( A , B ) ) |