This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1ocnvfv2 | |- ( ( F : A -1-1-onto-> B /\ C e. B ) -> ( F ` ( `' F ` C ) ) = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ococnv2 | |- ( F : A -1-1-onto-> B -> ( F o. `' F ) = ( _I |` B ) ) |
|
| 2 | 1 | fveq1d | |- ( F : A -1-1-onto-> B -> ( ( F o. `' F ) ` C ) = ( ( _I |` B ) ` C ) ) |
| 3 | 2 | adantr | |- ( ( F : A -1-1-onto-> B /\ C e. B ) -> ( ( F o. `' F ) ` C ) = ( ( _I |` B ) ` C ) ) |
| 4 | f1ocnv | |- ( F : A -1-1-onto-> B -> `' F : B -1-1-onto-> A ) |
|
| 5 | f1of | |- ( `' F : B -1-1-onto-> A -> `' F : B --> A ) |
|
| 6 | 4 5 | syl | |- ( F : A -1-1-onto-> B -> `' F : B --> A ) |
| 7 | fvco3 | |- ( ( `' F : B --> A /\ C e. B ) -> ( ( F o. `' F ) ` C ) = ( F ` ( `' F ` C ) ) ) |
|
| 8 | 6 7 | sylan | |- ( ( F : A -1-1-onto-> B /\ C e. B ) -> ( ( F o. `' F ) ` C ) = ( F ` ( `' F ` C ) ) ) |
| 9 | fvresi | |- ( C e. B -> ( ( _I |` B ) ` C ) = C ) |
|
| 10 | 9 | adantl | |- ( ( F : A -1-1-onto-> B /\ C e. B ) -> ( ( _I |` B ) ` C ) = C ) |
| 11 | 3 8 10 | 3eqtr3d | |- ( ( F : A -1-1-onto-> B /\ C e. B ) -> ( F ` ( `' F ` C ) ) = C ) |