This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of two extended numbers with -e in front of them. (Contributed by FL, 26-Dec-2011) (Proof shortened by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xnegeq | |- ( A = B -> -e A = -e B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 | |- ( A = B -> ( A = +oo <-> B = +oo ) ) |
|
| 2 | eqeq1 | |- ( A = B -> ( A = -oo <-> B = -oo ) ) |
|
| 3 | negeq | |- ( A = B -> -u A = -u B ) |
|
| 4 | 2 3 | ifbieq2d | |- ( A = B -> if ( A = -oo , +oo , -u A ) = if ( B = -oo , +oo , -u B ) ) |
| 5 | 1 4 | ifbieq2d | |- ( A = B -> if ( A = +oo , -oo , if ( A = -oo , +oo , -u A ) ) = if ( B = +oo , -oo , if ( B = -oo , +oo , -u B ) ) ) |
| 6 | df-xneg | |- -e A = if ( A = +oo , -oo , if ( A = -oo , +oo , -u A ) ) |
|
| 7 | df-xneg | |- -e B = if ( B = +oo , -oo , if ( B = -oo , +oo , -u B ) ) |
|
| 8 | 5 6 7 | 3eqtr4g | |- ( A = B -> -e A = -e B ) |