This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of extended real negative. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xnegcl | |- ( A e. RR* -> -e A e. RR* ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr | |- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
|
| 2 | rexneg | |- ( A e. RR -> -e A = -u A ) |
|
| 3 | renegcl | |- ( A e. RR -> -u A e. RR ) |
|
| 4 | 2 3 | eqeltrd | |- ( A e. RR -> -e A e. RR ) |
| 5 | 4 | rexrd | |- ( A e. RR -> -e A e. RR* ) |
| 6 | xnegeq | |- ( A = +oo -> -e A = -e +oo ) |
|
| 7 | xnegpnf | |- -e +oo = -oo |
|
| 8 | mnfxr | |- -oo e. RR* |
|
| 9 | 7 8 | eqeltri | |- -e +oo e. RR* |
| 10 | 6 9 | eqeltrdi | |- ( A = +oo -> -e A e. RR* ) |
| 11 | xnegeq | |- ( A = -oo -> -e A = -e -oo ) |
|
| 12 | xnegmnf | |- -e -oo = +oo |
|
| 13 | pnfxr | |- +oo e. RR* |
|
| 14 | 12 13 | eqeltri | |- -e -oo e. RR* |
| 15 | 11 14 | eqeltrdi | |- ( A = -oo -> -e A e. RR* ) |
| 16 | 5 10 15 | 3jaoi | |- ( ( A e. RR \/ A = +oo \/ A = -oo ) -> -e A e. RR* ) |
| 17 | 1 16 | sylbi | |- ( A e. RR* -> -e A e. RR* ) |