This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of ltneg . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xltneg | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B <-> -e B < -e A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xltnegi | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> -e B < -e A ) |
|
| 2 | 1 | 3expia | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> -e B < -e A ) ) |
| 3 | xnegcl | |- ( B e. RR* -> -e B e. RR* ) |
|
| 4 | xnegcl | |- ( A e. RR* -> -e A e. RR* ) |
|
| 5 | xltnegi | |- ( ( -e B e. RR* /\ -e A e. RR* /\ -e B < -e A ) -> -e -e A < -e -e B ) |
|
| 6 | 5 | 3expia | |- ( ( -e B e. RR* /\ -e A e. RR* ) -> ( -e B < -e A -> -e -e A < -e -e B ) ) |
| 7 | 3 4 6 | syl2anr | |- ( ( A e. RR* /\ B e. RR* ) -> ( -e B < -e A -> -e -e A < -e -e B ) ) |
| 8 | xnegneg | |- ( A e. RR* -> -e -e A = A ) |
|
| 9 | xnegneg | |- ( B e. RR* -> -e -e B = B ) |
|
| 10 | 8 9 | breqan12d | |- ( ( A e. RR* /\ B e. RR* ) -> ( -e -e A < -e -e B <-> A < B ) ) |
| 11 | 7 10 | sylibd | |- ( ( A e. RR* /\ B e. RR* ) -> ( -e B < -e A -> A < B ) ) |
| 12 | 2 11 | impbid | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B <-> -e B < -e A ) ) |