This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of negneg . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xnegneg | |- ( A e. RR* -> -e -e A = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr | |- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
|
| 2 | rexneg | |- ( A e. RR -> -e A = -u A ) |
|
| 3 | xnegeq | |- ( -e A = -u A -> -e -e A = -e -u A ) |
|
| 4 | 2 3 | syl | |- ( A e. RR -> -e -e A = -e -u A ) |
| 5 | renegcl | |- ( A e. RR -> -u A e. RR ) |
|
| 6 | rexneg | |- ( -u A e. RR -> -e -u A = -u -u A ) |
|
| 7 | 5 6 | syl | |- ( A e. RR -> -e -u A = -u -u A ) |
| 8 | recn | |- ( A e. RR -> A e. CC ) |
|
| 9 | 8 | negnegd | |- ( A e. RR -> -u -u A = A ) |
| 10 | 4 7 9 | 3eqtrd | |- ( A e. RR -> -e -e A = A ) |
| 11 | xnegmnf | |- -e -oo = +oo |
|
| 12 | xnegeq | |- ( A = +oo -> -e A = -e +oo ) |
|
| 13 | xnegpnf | |- -e +oo = -oo |
|
| 14 | 12 13 | eqtrdi | |- ( A = +oo -> -e A = -oo ) |
| 15 | xnegeq | |- ( -e A = -oo -> -e -e A = -e -oo ) |
|
| 16 | 14 15 | syl | |- ( A = +oo -> -e -e A = -e -oo ) |
| 17 | id | |- ( A = +oo -> A = +oo ) |
|
| 18 | 11 16 17 | 3eqtr4a | |- ( A = +oo -> -e -e A = A ) |
| 19 | xnegeq | |- ( A = -oo -> -e A = -e -oo ) |
|
| 20 | 19 11 | eqtrdi | |- ( A = -oo -> -e A = +oo ) |
| 21 | xnegeq | |- ( -e A = +oo -> -e -e A = -e +oo ) |
|
| 22 | 20 21 | syl | |- ( A = -oo -> -e -e A = -e +oo ) |
| 23 | id | |- ( A = -oo -> A = -oo ) |
|
| 24 | 13 22 23 | 3eqtr4a | |- ( A = -oo -> -e -e A = A ) |
| 25 | 10 18 24 | 3jaoi | |- ( ( A e. RR \/ A = +oo \/ A = -oo ) -> -e -e A = A ) |
| 26 | 1 25 | sylbi | |- ( A e. RR* -> -e -e A = A ) |