This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The defined bijection from [ 0 , 1 ] to [ 0 , +oo ] is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 8-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iccpnfhmeo.f | |- F = ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) |
|
| iccpnfhmeo.k | |- K = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
||
| Assertion | iccpnfhmeo | |- ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) /\ F e. ( II Homeo K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccpnfhmeo.f | |- F = ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) |
|
| 2 | iccpnfhmeo.k | |- K = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
|
| 3 | iccssxr | |- ( 0 [,] 1 ) C_ RR* |
|
| 4 | xrltso | |- < Or RR* |
|
| 5 | soss | |- ( ( 0 [,] 1 ) C_ RR* -> ( < Or RR* -> < Or ( 0 [,] 1 ) ) ) |
|
| 6 | 3 4 5 | mp2 | |- < Or ( 0 [,] 1 ) |
| 7 | iccssxr | |- ( 0 [,] +oo ) C_ RR* |
|
| 8 | soss | |- ( ( 0 [,] +oo ) C_ RR* -> ( < Or RR* -> < Or ( 0 [,] +oo ) ) ) |
|
| 9 | 7 4 8 | mp2 | |- < Or ( 0 [,] +oo ) |
| 10 | sopo | |- ( < Or ( 0 [,] +oo ) -> < Po ( 0 [,] +oo ) ) |
|
| 11 | 9 10 | ax-mp | |- < Po ( 0 [,] +oo ) |
| 12 | 1 | iccpnfcnv | |- ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) /\ `' F = ( y e. ( 0 [,] +oo ) |-> if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) ) ) |
| 13 | 12 | simpli | |- F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) |
| 14 | f1ofo | |- ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) -> F : ( 0 [,] 1 ) -onto-> ( 0 [,] +oo ) ) |
|
| 15 | 13 14 | ax-mp | |- F : ( 0 [,] 1 ) -onto-> ( 0 [,] +oo ) |
| 16 | elicc01 | |- ( z e. ( 0 [,] 1 ) <-> ( z e. RR /\ 0 <_ z /\ z <_ 1 ) ) |
|
| 17 | 16 | simp1bi | |- ( z e. ( 0 [,] 1 ) -> z e. RR ) |
| 18 | 17 | 3ad2ant1 | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z e. RR ) |
| 19 | elicc01 | |- ( w e. ( 0 [,] 1 ) <-> ( w e. RR /\ 0 <_ w /\ w <_ 1 ) ) |
|
| 20 | 19 | simp1bi | |- ( w e. ( 0 [,] 1 ) -> w e. RR ) |
| 21 | 20 | 3ad2ant2 | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> w e. RR ) |
| 22 | 1red | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> 1 e. RR ) |
|
| 23 | simp3 | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z < w ) |
|
| 24 | 19 | simp3bi | |- ( w e. ( 0 [,] 1 ) -> w <_ 1 ) |
| 25 | 24 | 3ad2ant2 | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> w <_ 1 ) |
| 26 | 18 21 22 23 25 | ltletrd | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z < 1 ) |
| 27 | 18 26 | gtned | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> 1 =/= z ) |
| 28 | 27 | necomd | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z =/= 1 ) |
| 29 | ifnefalse | |- ( z =/= 1 -> if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) = ( z / ( 1 - z ) ) ) |
|
| 30 | 28 29 | syl | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) = ( z / ( 1 - z ) ) ) |
| 31 | breq2 | |- ( +oo = if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) -> ( ( z / ( 1 - z ) ) < +oo <-> ( z / ( 1 - z ) ) < if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) ) ) |
|
| 32 | breq2 | |- ( ( w / ( 1 - w ) ) = if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) -> ( ( z / ( 1 - z ) ) < ( w / ( 1 - w ) ) <-> ( z / ( 1 - z ) ) < if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) ) ) |
|
| 33 | 1re | |- 1 e. RR |
|
| 34 | resubcl | |- ( ( 1 e. RR /\ z e. RR ) -> ( 1 - z ) e. RR ) |
|
| 35 | 33 18 34 | sylancr | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( 1 - z ) e. RR ) |
| 36 | ax-1cn | |- 1 e. CC |
|
| 37 | 18 | recnd | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z e. CC ) |
| 38 | subeq0 | |- ( ( 1 e. CC /\ z e. CC ) -> ( ( 1 - z ) = 0 <-> 1 = z ) ) |
|
| 39 | 38 | necon3bid | |- ( ( 1 e. CC /\ z e. CC ) -> ( ( 1 - z ) =/= 0 <-> 1 =/= z ) ) |
| 40 | 36 37 39 | sylancr | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( ( 1 - z ) =/= 0 <-> 1 =/= z ) ) |
| 41 | 27 40 | mpbird | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( 1 - z ) =/= 0 ) |
| 42 | 18 35 41 | redivcld | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( z / ( 1 - z ) ) e. RR ) |
| 43 | 42 | ltpnfd | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( z / ( 1 - z ) ) < +oo ) |
| 44 | 43 | adantr | |- ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ w = 1 ) -> ( z / ( 1 - z ) ) < +oo ) |
| 45 | simpl3 | |- ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> z < w ) |
|
| 46 | eqid | |- ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) = ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) |
|
| 47 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 48 | 46 47 | icopnfhmeo | |- ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) /\ ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) 1 ) ) Homeo ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) ) ) |
| 49 | 48 | simpli | |- ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) |
| 50 | 49 | a1i | |- ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) ) |
| 51 | simp1 | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z e. ( 0 [,] 1 ) ) |
|
| 52 | 0xr | |- 0 e. RR* |
|
| 53 | 1xr | |- 1 e. RR* |
|
| 54 | 0le1 | |- 0 <_ 1 |
|
| 55 | snunico | |- ( ( 0 e. RR* /\ 1 e. RR* /\ 0 <_ 1 ) -> ( ( 0 [,) 1 ) u. { 1 } ) = ( 0 [,] 1 ) ) |
|
| 56 | 52 53 54 55 | mp3an | |- ( ( 0 [,) 1 ) u. { 1 } ) = ( 0 [,] 1 ) |
| 57 | 51 56 | eleqtrrdi | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z e. ( ( 0 [,) 1 ) u. { 1 } ) ) |
| 58 | elun | |- ( z e. ( ( 0 [,) 1 ) u. { 1 } ) <-> ( z e. ( 0 [,) 1 ) \/ z e. { 1 } ) ) |
|
| 59 | 57 58 | sylib | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( z e. ( 0 [,) 1 ) \/ z e. { 1 } ) ) |
| 60 | 59 | ord | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( -. z e. ( 0 [,) 1 ) -> z e. { 1 } ) ) |
| 61 | elsni | |- ( z e. { 1 } -> z = 1 ) |
|
| 62 | 60 61 | syl6 | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( -. z e. ( 0 [,) 1 ) -> z = 1 ) ) |
| 63 | 62 | necon1ad | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( z =/= 1 -> z e. ( 0 [,) 1 ) ) ) |
| 64 | 28 63 | mpd | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> z e. ( 0 [,) 1 ) ) |
| 65 | 64 | adantr | |- ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> z e. ( 0 [,) 1 ) ) |
| 66 | simp2 | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> w e. ( 0 [,] 1 ) ) |
|
| 67 | 66 56 | eleqtrrdi | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> w e. ( ( 0 [,) 1 ) u. { 1 } ) ) |
| 68 | elun | |- ( w e. ( ( 0 [,) 1 ) u. { 1 } ) <-> ( w e. ( 0 [,) 1 ) \/ w e. { 1 } ) ) |
|
| 69 | 67 68 | sylib | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( w e. ( 0 [,) 1 ) \/ w e. { 1 } ) ) |
| 70 | 69 | ord | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( -. w e. ( 0 [,) 1 ) -> w e. { 1 } ) ) |
| 71 | elsni | |- ( w e. { 1 } -> w = 1 ) |
|
| 72 | 70 71 | syl6 | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( -. w e. ( 0 [,) 1 ) -> w = 1 ) ) |
| 73 | 72 | con1d | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( -. w = 1 -> w e. ( 0 [,) 1 ) ) ) |
| 74 | 73 | imp | |- ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> w e. ( 0 [,) 1 ) ) |
| 75 | isorel | |- ( ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +oo ) ) /\ ( z e. ( 0 [,) 1 ) /\ w e. ( 0 [,) 1 ) ) ) -> ( z < w <-> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` z ) < ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` w ) ) ) |
|
| 76 | 50 65 74 75 | syl12anc | |- ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> ( z < w <-> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` z ) < ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` w ) ) ) |
| 77 | 45 76 | mpbid | |- ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` z ) < ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` w ) ) |
| 78 | id | |- ( x = z -> x = z ) |
|
| 79 | oveq2 | |- ( x = z -> ( 1 - x ) = ( 1 - z ) ) |
|
| 80 | 78 79 | oveq12d | |- ( x = z -> ( x / ( 1 - x ) ) = ( z / ( 1 - z ) ) ) |
| 81 | ovex | |- ( z / ( 1 - z ) ) e. _V |
|
| 82 | 80 46 81 | fvmpt | |- ( z e. ( 0 [,) 1 ) -> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` z ) = ( z / ( 1 - z ) ) ) |
| 83 | 65 82 | syl | |- ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` z ) = ( z / ( 1 - z ) ) ) |
| 84 | id | |- ( x = w -> x = w ) |
|
| 85 | oveq2 | |- ( x = w -> ( 1 - x ) = ( 1 - w ) ) |
|
| 86 | 84 85 | oveq12d | |- ( x = w -> ( x / ( 1 - x ) ) = ( w / ( 1 - w ) ) ) |
| 87 | ovex | |- ( w / ( 1 - w ) ) e. _V |
|
| 88 | 86 46 87 | fvmpt | |- ( w e. ( 0 [,) 1 ) -> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` w ) = ( w / ( 1 - w ) ) ) |
| 89 | 74 88 | syl | |- ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` w ) = ( w / ( 1 - w ) ) ) |
| 90 | 77 83 89 | 3brtr3d | |- ( ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) /\ -. w = 1 ) -> ( z / ( 1 - z ) ) < ( w / ( 1 - w ) ) ) |
| 91 | 31 32 44 90 | ifbothda | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> ( z / ( 1 - z ) ) < if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) ) |
| 92 | 30 91 | eqbrtrd | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) /\ z < w ) -> if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) < if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) ) |
| 93 | 92 | 3expia | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) ) -> ( z < w -> if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) < if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) ) ) |
| 94 | eqeq1 | |- ( x = z -> ( x = 1 <-> z = 1 ) ) |
|
| 95 | 94 80 | ifbieq2d | |- ( x = z -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) = if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) ) |
| 96 | pnfex | |- +oo e. _V |
|
| 97 | 96 81 | ifex | |- if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) e. _V |
| 98 | 95 1 97 | fvmpt | |- ( z e. ( 0 [,] 1 ) -> ( F ` z ) = if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) ) |
| 99 | eqeq1 | |- ( x = w -> ( x = 1 <-> w = 1 ) ) |
|
| 100 | 99 86 | ifbieq2d | |- ( x = w -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) = if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) ) |
| 101 | 96 87 | ifex | |- if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) e. _V |
| 102 | 100 1 101 | fvmpt | |- ( w e. ( 0 [,] 1 ) -> ( F ` w ) = if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) ) |
| 103 | 98 102 | breqan12d | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) ) -> ( ( F ` z ) < ( F ` w ) <-> if ( z = 1 , +oo , ( z / ( 1 - z ) ) ) < if ( w = 1 , +oo , ( w / ( 1 - w ) ) ) ) ) |
| 104 | 93 103 | sylibrd | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) ) -> ( z < w -> ( F ` z ) < ( F ` w ) ) ) |
| 105 | 104 | rgen2 | |- A. z e. ( 0 [,] 1 ) A. w e. ( 0 [,] 1 ) ( z < w -> ( F ` z ) < ( F ` w ) ) |
| 106 | soisoi | |- ( ( ( < Or ( 0 [,] 1 ) /\ < Po ( 0 [,] +oo ) ) /\ ( F : ( 0 [,] 1 ) -onto-> ( 0 [,] +oo ) /\ A. z e. ( 0 [,] 1 ) A. w e. ( 0 [,] 1 ) ( z < w -> ( F ` z ) < ( F ` w ) ) ) ) -> F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) |
|
| 107 | 6 11 15 105 106 | mp4an | |- F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) |
| 108 | letsr | |- <_ e. TosetRel |
|
| 109 | 108 | elexi | |- <_ e. _V |
| 110 | 109 | inex1 | |- ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) e. _V |
| 111 | 109 | inex1 | |- ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) e. _V |
| 112 | leiso | |- ( ( ( 0 [,] 1 ) C_ RR* /\ ( 0 [,] +oo ) C_ RR* ) -> ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) <-> F Isom <_ , <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) ) |
|
| 113 | 3 7 112 | mp2an | |- ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) <-> F Isom <_ , <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) |
| 114 | 107 113 | mpbi | |- F Isom <_ , <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) |
| 115 | isores1 | |- ( F Isom <_ , <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) <-> F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) |
|
| 116 | 114 115 | mpbi | |- F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) |
| 117 | isores2 | |- ( F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) <-> F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) |
|
| 118 | 116 117 | mpbi | |- F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) |
| 119 | tsrps | |- ( <_ e. TosetRel -> <_ e. PosetRel ) |
|
| 120 | 108 119 | ax-mp | |- <_ e. PosetRel |
| 121 | ledm | |- RR* = dom <_ |
|
| 122 | 121 | psssdm | |- ( ( <_ e. PosetRel /\ ( 0 [,] 1 ) C_ RR* ) -> dom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) = ( 0 [,] 1 ) ) |
| 123 | 120 3 122 | mp2an | |- dom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) = ( 0 [,] 1 ) |
| 124 | 123 | eqcomi | |- ( 0 [,] 1 ) = dom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
| 125 | 121 | psssdm | |- ( ( <_ e. PosetRel /\ ( 0 [,] +oo ) C_ RR* ) -> dom ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) = ( 0 [,] +oo ) ) |
| 126 | 120 7 125 | mp2an | |- dom ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) = ( 0 [,] +oo ) |
| 127 | 126 | eqcomi | |- ( 0 [,] +oo ) = dom ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) |
| 128 | 124 127 | ordthmeo | |- ( ( ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) e. _V /\ ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) e. _V /\ F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) -> F e. ( ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ` ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) ) ) |
| 129 | 110 111 118 128 | mp3an | |- F e. ( ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ` ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) ) |
| 130 | dfii5 | |- II = ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) |
|
| 131 | ordtresticc | |- ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) = ( ordTop ` ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) |
|
| 132 | 2 131 | eqtri | |- K = ( ordTop ` ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) |
| 133 | 130 132 | oveq12i | |- ( II Homeo K ) = ( ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ` ( <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) ) |
| 134 | 129 133 | eleqtrri | |- F e. ( II Homeo K ) |
| 135 | 107 134 | pm3.2i | |- ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) /\ F e. ( II Homeo K ) ) |