This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a negated closed real interval. (Contributed by Paul Chapman, 26-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccneg | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C e. ( A [,] B ) <-> -u C e. ( -u B [,] -u A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcl | |- ( C e. RR -> -u C e. RR ) |
|
| 2 | ax-1 | |- ( C e. RR -> ( -u C e. RR -> C e. RR ) ) |
|
| 3 | 1 2 | impbid2 | |- ( C e. RR -> ( C e. RR <-> -u C e. RR ) ) |
| 4 | 3 | 3ad2ant3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C e. RR <-> -u C e. RR ) ) |
| 5 | ancom | |- ( ( C <_ B /\ A <_ C ) <-> ( A <_ C /\ C <_ B ) ) |
|
| 6 | leneg | |- ( ( C e. RR /\ B e. RR ) -> ( C <_ B <-> -u B <_ -u C ) ) |
|
| 7 | 6 | ancoms | |- ( ( B e. RR /\ C e. RR ) -> ( C <_ B <-> -u B <_ -u C ) ) |
| 8 | 7 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C <_ B <-> -u B <_ -u C ) ) |
| 9 | leneg | |- ( ( A e. RR /\ C e. RR ) -> ( A <_ C <-> -u C <_ -u A ) ) |
|
| 10 | 9 | 3adant2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A <_ C <-> -u C <_ -u A ) ) |
| 11 | 8 10 | anbi12d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C <_ B /\ A <_ C ) <-> ( -u B <_ -u C /\ -u C <_ -u A ) ) ) |
| 12 | 5 11 | bitr3id | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A <_ C /\ C <_ B ) <-> ( -u B <_ -u C /\ -u C <_ -u A ) ) ) |
| 13 | 4 12 | anbi12d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C e. RR /\ ( A <_ C /\ C <_ B ) ) <-> ( -u C e. RR /\ ( -u B <_ -u C /\ -u C <_ -u A ) ) ) ) |
| 14 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) ) ) |
|
| 15 | 14 | 3adant3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) ) ) |
| 16 | 3anass | |- ( ( C e. RR /\ A <_ C /\ C <_ B ) <-> ( C e. RR /\ ( A <_ C /\ C <_ B ) ) ) |
|
| 17 | 15 16 | bitrdi | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C e. ( A [,] B ) <-> ( C e. RR /\ ( A <_ C /\ C <_ B ) ) ) ) |
| 18 | renegcl | |- ( B e. RR -> -u B e. RR ) |
|
| 19 | renegcl | |- ( A e. RR -> -u A e. RR ) |
|
| 20 | elicc2 | |- ( ( -u B e. RR /\ -u A e. RR ) -> ( -u C e. ( -u B [,] -u A ) <-> ( -u C e. RR /\ -u B <_ -u C /\ -u C <_ -u A ) ) ) |
|
| 21 | 18 19 20 | syl2anr | |- ( ( A e. RR /\ B e. RR ) -> ( -u C e. ( -u B [,] -u A ) <-> ( -u C e. RR /\ -u B <_ -u C /\ -u C <_ -u A ) ) ) |
| 22 | 21 | 3adant3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -u C e. ( -u B [,] -u A ) <-> ( -u C e. RR /\ -u B <_ -u C /\ -u C <_ -u A ) ) ) |
| 23 | 3anass | |- ( ( -u C e. RR /\ -u B <_ -u C /\ -u C <_ -u A ) <-> ( -u C e. RR /\ ( -u B <_ -u C /\ -u C <_ -u A ) ) ) |
|
| 24 | 22 23 | bitrdi | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -u C e. ( -u B [,] -u A ) <-> ( -u C e. RR /\ ( -u B <_ -u C /\ -u C <_ -u A ) ) ) ) |
| 25 | 13 17 24 | 3bitr4d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C e. ( A [,] B ) <-> -u C e. ( -u B [,] -u A ) ) ) |