This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The extended reals are homeomorphic to the interval [ 0 , 1 ] . (Contributed by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrhmph | |- II ~= ( ordTop ` <_ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1rr | |- -u 1 e. RR |
|
| 2 | 1re | |- 1 e. RR |
|
| 3 | neg1lt0 | |- -u 1 < 0 |
|
| 4 | 0lt1 | |- 0 < 1 |
|
| 5 | 0re | |- 0 e. RR |
|
| 6 | 1 5 2 | lttri | |- ( ( -u 1 < 0 /\ 0 < 1 ) -> -u 1 < 1 ) |
| 7 | 3 4 6 | mp2an | |- -u 1 < 1 |
| 8 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 9 | eqid | |- ( x e. ( 0 [,] 1 ) |-> ( ( x x. 1 ) + ( ( 1 - x ) x. -u 1 ) ) ) = ( x e. ( 0 [,] 1 ) |-> ( ( x x. 1 ) + ( ( 1 - x ) x. -u 1 ) ) ) |
|
| 10 | 8 9 | icchmeo | |- ( ( -u 1 e. RR /\ 1 e. RR /\ -u 1 < 1 ) -> ( x e. ( 0 [,] 1 ) |-> ( ( x x. 1 ) + ( ( 1 - x ) x. -u 1 ) ) ) e. ( II Homeo ( ( TopOpen ` CCfld ) |`t ( -u 1 [,] 1 ) ) ) ) |
| 11 | 1 2 7 10 | mp3an | |- ( x e. ( 0 [,] 1 ) |-> ( ( x x. 1 ) + ( ( 1 - x ) x. -u 1 ) ) ) e. ( II Homeo ( ( TopOpen ` CCfld ) |`t ( -u 1 [,] 1 ) ) ) |
| 12 | hmphi | |- ( ( x e. ( 0 [,] 1 ) |-> ( ( x x. 1 ) + ( ( 1 - x ) x. -u 1 ) ) ) e. ( II Homeo ( ( TopOpen ` CCfld ) |`t ( -u 1 [,] 1 ) ) ) -> II ~= ( ( TopOpen ` CCfld ) |`t ( -u 1 [,] 1 ) ) ) |
|
| 13 | 11 12 | ax-mp | |- II ~= ( ( TopOpen ` CCfld ) |`t ( -u 1 [,] 1 ) ) |
| 14 | eqid | |- ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) = ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) |
|
| 15 | eqid | |- ( y e. ( -u 1 [,] 1 ) |-> if ( 0 <_ y , ( ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ` y ) , -e ( ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ` -u y ) ) ) = ( y e. ( -u 1 [,] 1 ) |-> if ( 0 <_ y , ( ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ` y ) , -e ( ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ` -u y ) ) ) |
|
| 16 | 14 15 8 | xrhmeo | |- ( ( y e. ( -u 1 [,] 1 ) |-> if ( 0 <_ y , ( ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ` y ) , -e ( ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ` -u y ) ) ) Isom < , < ( ( -u 1 [,] 1 ) , RR* ) /\ ( y e. ( -u 1 [,] 1 ) |-> if ( 0 <_ y , ( ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ` y ) , -e ( ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ` -u y ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( -u 1 [,] 1 ) ) Homeo ( ordTop ` <_ ) ) ) |
| 17 | 16 | simpri | |- ( y e. ( -u 1 [,] 1 ) |-> if ( 0 <_ y , ( ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ` y ) , -e ( ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ` -u y ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( -u 1 [,] 1 ) ) Homeo ( ordTop ` <_ ) ) |
| 18 | hmphi | |- ( ( y e. ( -u 1 [,] 1 ) |-> if ( 0 <_ y , ( ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ` y ) , -e ( ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ` -u y ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( -u 1 [,] 1 ) ) Homeo ( ordTop ` <_ ) ) -> ( ( TopOpen ` CCfld ) |`t ( -u 1 [,] 1 ) ) ~= ( ordTop ` <_ ) ) |
|
| 19 | 17 18 | ax-mp | |- ( ( TopOpen ` CCfld ) |`t ( -u 1 [,] 1 ) ) ~= ( ordTop ` <_ ) |
| 20 | hmphtr | |- ( ( II ~= ( ( TopOpen ` CCfld ) |`t ( -u 1 [,] 1 ) ) /\ ( ( TopOpen ` CCfld ) |`t ( -u 1 [,] 1 ) ) ~= ( ordTop ` <_ ) ) -> II ~= ( ordTop ` <_ ) ) |
|
| 21 | 13 19 20 | mp2an | |- II ~= ( ordTop ` <_ ) |