This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 20-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccss | |- ( ( ( A e. RR /\ B e. RR ) /\ ( A <_ C /\ D <_ B ) ) -> ( C [,] D ) C_ ( A [,] B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 2 | rexr | |- ( B e. RR -> B e. RR* ) |
|
| 3 | 1 2 | anim12i | |- ( ( A e. RR /\ B e. RR ) -> ( A e. RR* /\ B e. RR* ) ) |
| 4 | df-icc | |- [,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z <_ y ) } ) |
|
| 5 | xrletr | |- ( ( A e. RR* /\ C e. RR* /\ w e. RR* ) -> ( ( A <_ C /\ C <_ w ) -> A <_ w ) ) |
|
| 6 | xrletr | |- ( ( w e. RR* /\ D e. RR* /\ B e. RR* ) -> ( ( w <_ D /\ D <_ B ) -> w <_ B ) ) |
|
| 7 | 4 4 5 6 | ixxss12 | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A <_ C /\ D <_ B ) ) -> ( C [,] D ) C_ ( A [,] B ) ) |
| 8 | 3 7 | sylan | |- ( ( ( A e. RR /\ B e. RR ) /\ ( A <_ C /\ D <_ B ) ) -> ( C [,] D ) C_ ( A [,] B ) ) |