This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than or equal' relationship between division and multiplication. (Contributed by NM, 10-Mar-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lemuldiv2 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( C x. A ) <_ B <-> A <_ ( B / C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( A e. RR -> A e. CC ) |
|
| 2 | recn | |- ( C e. RR -> C e. CC ) |
|
| 3 | mulcom | |- ( ( A e. CC /\ C e. CC ) -> ( A x. C ) = ( C x. A ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. RR /\ C e. RR ) -> ( A x. C ) = ( C x. A ) ) |
| 5 | 4 | adantrr | |- ( ( A e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A x. C ) = ( C x. A ) ) |
| 6 | 5 | 3adant2 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A x. C ) = ( C x. A ) ) |
| 7 | 6 | breq1d | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A x. C ) <_ B <-> ( C x. A ) <_ B ) ) |
| 8 | lemuldiv | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A x. C ) <_ B <-> A <_ ( B / C ) ) ) |
|
| 9 | 7 8 | bitr3d | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( C x. A ) <_ B <-> A <_ ( B / C ) ) ) |