This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cancellation law for division. (Contributed by NM, 3-Feb-2004) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divcan3 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( B x. A ) / B ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( B x. A ) = ( B x. A ) |
|
| 2 | simp2 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> B e. CC ) |
|
| 3 | simp1 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> A e. CC ) |
|
| 4 | 2 3 | mulcld | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B x. A ) e. CC ) |
| 5 | 3simpc | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B e. CC /\ B =/= 0 ) ) |
|
| 6 | divmul | |- ( ( ( B x. A ) e. CC /\ A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( ( B x. A ) / B ) = A <-> ( B x. A ) = ( B x. A ) ) ) |
|
| 7 | 4 3 5 6 | syl3anc | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( ( B x. A ) / B ) = A <-> ( B x. A ) = ( B x. A ) ) ) |
| 8 | 1 7 | mpbiri | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( B x. A ) / B ) = A ) |