This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition to both sides of 'less than or equal to'. (Contributed by NM, 18-Oct-1999) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | leadd1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A <_ B <-> ( A + C ) <_ ( B + C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltadd1 | |- ( ( B e. RR /\ A e. RR /\ C e. RR ) -> ( B < A <-> ( B + C ) < ( A + C ) ) ) |
|
| 2 | 1 | 3com12 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B < A <-> ( B + C ) < ( A + C ) ) ) |
| 3 | 2 | notbid | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -. B < A <-> -. ( B + C ) < ( A + C ) ) ) |
| 4 | simp1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
|
| 5 | simp2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) |
|
| 6 | 4 5 | lenltd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A <_ B <-> -. B < A ) ) |
| 7 | simp3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
|
| 8 | 4 7 | readdcld | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A + C ) e. RR ) |
| 9 | 5 7 | readdcld | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B + C ) e. RR ) |
| 10 | 8 9 | lenltd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + C ) <_ ( B + C ) <-> -. ( B + C ) < ( A + C ) ) ) |
| 11 | 3 6 10 | 3bitr4d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A <_ B <-> ( A + C ) <_ ( B + C ) ) ) |