This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 30-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sermono.1 | |- ( ph -> K e. ( ZZ>= ` M ) ) |
|
| sermono.2 | |- ( ph -> N e. ( ZZ>= ` K ) ) |
||
| sermono.3 | |- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) e. RR ) |
||
| sermono.4 | |- ( ( ph /\ x e. ( ( K + 1 ) ... N ) ) -> 0 <_ ( F ` x ) ) |
||
| Assertion | sermono | |- ( ph -> ( seq M ( + , F ) ` K ) <_ ( seq M ( + , F ) ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sermono.1 | |- ( ph -> K e. ( ZZ>= ` M ) ) |
|
| 2 | sermono.2 | |- ( ph -> N e. ( ZZ>= ` K ) ) |
|
| 3 | sermono.3 | |- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) e. RR ) |
|
| 4 | sermono.4 | |- ( ( ph /\ x e. ( ( K + 1 ) ... N ) ) -> 0 <_ ( F ` x ) ) |
|
| 5 | elfzuz | |- ( k e. ( K ... N ) -> k e. ( ZZ>= ` K ) ) |
|
| 6 | uztrn | |- ( ( k e. ( ZZ>= ` K ) /\ K e. ( ZZ>= ` M ) ) -> k e. ( ZZ>= ` M ) ) |
|
| 7 | 5 1 6 | syl2anr | |- ( ( ph /\ k e. ( K ... N ) ) -> k e. ( ZZ>= ` M ) ) |
| 8 | elfzuz3 | |- ( k e. ( K ... N ) -> N e. ( ZZ>= ` k ) ) |
|
| 9 | 8 | adantl | |- ( ( ph /\ k e. ( K ... N ) ) -> N e. ( ZZ>= ` k ) ) |
| 10 | fzss2 | |- ( N e. ( ZZ>= ` k ) -> ( M ... k ) C_ ( M ... N ) ) |
|
| 11 | 9 10 | syl | |- ( ( ph /\ k e. ( K ... N ) ) -> ( M ... k ) C_ ( M ... N ) ) |
| 12 | 11 | sselda | |- ( ( ( ph /\ k e. ( K ... N ) ) /\ x e. ( M ... k ) ) -> x e. ( M ... N ) ) |
| 13 | 3 | adantlr | |- ( ( ( ph /\ k e. ( K ... N ) ) /\ x e. ( M ... N ) ) -> ( F ` x ) e. RR ) |
| 14 | 12 13 | syldan | |- ( ( ( ph /\ k e. ( K ... N ) ) /\ x e. ( M ... k ) ) -> ( F ` x ) e. RR ) |
| 15 | readdcl | |- ( ( x e. RR /\ y e. RR ) -> ( x + y ) e. RR ) |
|
| 16 | 15 | adantl | |- ( ( ( ph /\ k e. ( K ... N ) ) /\ ( x e. RR /\ y e. RR ) ) -> ( x + y ) e. RR ) |
| 17 | 7 14 16 | seqcl | |- ( ( ph /\ k e. ( K ... N ) ) -> ( seq M ( + , F ) ` k ) e. RR ) |
| 18 | fveq2 | |- ( x = ( k + 1 ) -> ( F ` x ) = ( F ` ( k + 1 ) ) ) |
|
| 19 | 18 | breq2d | |- ( x = ( k + 1 ) -> ( 0 <_ ( F ` x ) <-> 0 <_ ( F ` ( k + 1 ) ) ) ) |
| 20 | 4 | ralrimiva | |- ( ph -> A. x e. ( ( K + 1 ) ... N ) 0 <_ ( F ` x ) ) |
| 21 | 20 | adantr | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> A. x e. ( ( K + 1 ) ... N ) 0 <_ ( F ` x ) ) |
| 22 | simpr | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> k e. ( K ... ( N - 1 ) ) ) |
|
| 23 | 1 | adantr | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> K e. ( ZZ>= ` M ) ) |
| 24 | eluzelz | |- ( K e. ( ZZ>= ` M ) -> K e. ZZ ) |
|
| 25 | 23 24 | syl | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> K e. ZZ ) |
| 26 | 2 | adantr | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` K ) ) |
| 27 | eluzelz | |- ( N e. ( ZZ>= ` K ) -> N e. ZZ ) |
|
| 28 | 26 27 | syl | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> N e. ZZ ) |
| 29 | peano2zm | |- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
|
| 30 | 28 29 | syl | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( N - 1 ) e. ZZ ) |
| 31 | elfzelz | |- ( k e. ( K ... ( N - 1 ) ) -> k e. ZZ ) |
|
| 32 | 31 | adantl | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> k e. ZZ ) |
| 33 | 1zzd | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> 1 e. ZZ ) |
|
| 34 | fzaddel | |- ( ( ( K e. ZZ /\ ( N - 1 ) e. ZZ ) /\ ( k e. ZZ /\ 1 e. ZZ ) ) -> ( k e. ( K ... ( N - 1 ) ) <-> ( k + 1 ) e. ( ( K + 1 ) ... ( ( N - 1 ) + 1 ) ) ) ) |
|
| 35 | 25 30 32 33 34 | syl22anc | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( k e. ( K ... ( N - 1 ) ) <-> ( k + 1 ) e. ( ( K + 1 ) ... ( ( N - 1 ) + 1 ) ) ) ) |
| 36 | 22 35 | mpbid | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( k + 1 ) e. ( ( K + 1 ) ... ( ( N - 1 ) + 1 ) ) ) |
| 37 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 38 | ax-1cn | |- 1 e. CC |
|
| 39 | npcan | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
|
| 40 | 37 38 39 | sylancl | |- ( N e. ZZ -> ( ( N - 1 ) + 1 ) = N ) |
| 41 | 28 40 | syl | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) = N ) |
| 42 | 41 | oveq2d | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( ( K + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( ( K + 1 ) ... N ) ) |
| 43 | 36 42 | eleqtrd | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( k + 1 ) e. ( ( K + 1 ) ... N ) ) |
| 44 | 19 21 43 | rspcdva | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> 0 <_ ( F ` ( k + 1 ) ) ) |
| 45 | fzelp1 | |- ( k e. ( K ... ( N - 1 ) ) -> k e. ( K ... ( ( N - 1 ) + 1 ) ) ) |
|
| 46 | 45 | adantl | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> k e. ( K ... ( ( N - 1 ) + 1 ) ) ) |
| 47 | 41 | oveq2d | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( K ... ( ( N - 1 ) + 1 ) ) = ( K ... N ) ) |
| 48 | 46 47 | eleqtrd | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> k e. ( K ... N ) ) |
| 49 | 48 17 | syldan | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( seq M ( + , F ) ` k ) e. RR ) |
| 50 | 18 | eleq1d | |- ( x = ( k + 1 ) -> ( ( F ` x ) e. RR <-> ( F ` ( k + 1 ) ) e. RR ) ) |
| 51 | 3 | ralrimiva | |- ( ph -> A. x e. ( M ... N ) ( F ` x ) e. RR ) |
| 52 | 51 | adantr | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> A. x e. ( M ... N ) ( F ` x ) e. RR ) |
| 53 | fzss1 | |- ( K e. ( ZZ>= ` M ) -> ( K ... N ) C_ ( M ... N ) ) |
|
| 54 | 23 53 | syl | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( K ... N ) C_ ( M ... N ) ) |
| 55 | fzp1elp1 | |- ( k e. ( K ... ( N - 1 ) ) -> ( k + 1 ) e. ( K ... ( ( N - 1 ) + 1 ) ) ) |
|
| 56 | 55 | adantl | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( k + 1 ) e. ( K ... ( ( N - 1 ) + 1 ) ) ) |
| 57 | 56 47 | eleqtrd | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( k + 1 ) e. ( K ... N ) ) |
| 58 | 54 57 | sseldd | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( k + 1 ) e. ( M ... N ) ) |
| 59 | 50 52 58 | rspcdva | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( F ` ( k + 1 ) ) e. RR ) |
| 60 | 49 59 | addge01d | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( 0 <_ ( F ` ( k + 1 ) ) <-> ( seq M ( + , F ) ` k ) <_ ( ( seq M ( + , F ) ` k ) + ( F ` ( k + 1 ) ) ) ) ) |
| 61 | 44 60 | mpbid | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( seq M ( + , F ) ` k ) <_ ( ( seq M ( + , F ) ` k ) + ( F ` ( k + 1 ) ) ) ) |
| 62 | 48 7 | syldan | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> k e. ( ZZ>= ` M ) ) |
| 63 | seqp1 | |- ( k e. ( ZZ>= ` M ) -> ( seq M ( + , F ) ` ( k + 1 ) ) = ( ( seq M ( + , F ) ` k ) + ( F ` ( k + 1 ) ) ) ) |
|
| 64 | 62 63 | syl | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( seq M ( + , F ) ` ( k + 1 ) ) = ( ( seq M ( + , F ) ` k ) + ( F ` ( k + 1 ) ) ) ) |
| 65 | 61 64 | breqtrrd | |- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( seq M ( + , F ) ` k ) <_ ( seq M ( + , F ) ` ( k + 1 ) ) ) |
| 66 | 2 17 65 | monoord | |- ( ph -> ( seq M ( + , F ) ` K ) <_ ( seq M ( + , F ) ` N ) ) |