This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a nonempty set of reals is greater than minus infinity. (Contributed by NM, 2-Feb-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supxrgtmnf | |- ( ( A C_ RR /\ A =/= (/) ) -> -oo < sup ( A , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supxrbnd | |- ( ( A C_ RR /\ A =/= (/) /\ sup ( A , RR* , < ) < +oo ) -> sup ( A , RR* , < ) e. RR ) |
|
| 2 | 1 | 3expia | |- ( ( A C_ RR /\ A =/= (/) ) -> ( sup ( A , RR* , < ) < +oo -> sup ( A , RR* , < ) e. RR ) ) |
| 3 | 2 | con3d | |- ( ( A C_ RR /\ A =/= (/) ) -> ( -. sup ( A , RR* , < ) e. RR -> -. sup ( A , RR* , < ) < +oo ) ) |
| 4 | ressxr | |- RR C_ RR* |
|
| 5 | sstr | |- ( ( A C_ RR /\ RR C_ RR* ) -> A C_ RR* ) |
|
| 6 | 4 5 | mpan2 | |- ( A C_ RR -> A C_ RR* ) |
| 7 | supxrcl | |- ( A C_ RR* -> sup ( A , RR* , < ) e. RR* ) |
|
| 8 | 6 7 | syl | |- ( A C_ RR -> sup ( A , RR* , < ) e. RR* ) |
| 9 | 8 | adantr | |- ( ( A C_ RR /\ A =/= (/) ) -> sup ( A , RR* , < ) e. RR* ) |
| 10 | nltpnft | |- ( sup ( A , RR* , < ) e. RR* -> ( sup ( A , RR* , < ) = +oo <-> -. sup ( A , RR* , < ) < +oo ) ) |
|
| 11 | 9 10 | syl | |- ( ( A C_ RR /\ A =/= (/) ) -> ( sup ( A , RR* , < ) = +oo <-> -. sup ( A , RR* , < ) < +oo ) ) |
| 12 | 3 11 | sylibrd | |- ( ( A C_ RR /\ A =/= (/) ) -> ( -. sup ( A , RR* , < ) e. RR -> sup ( A , RR* , < ) = +oo ) ) |
| 13 | 12 | orrd | |- ( ( A C_ RR /\ A =/= (/) ) -> ( sup ( A , RR* , < ) e. RR \/ sup ( A , RR* , < ) = +oo ) ) |
| 14 | mnfltxr | |- ( ( sup ( A , RR* , < ) e. RR \/ sup ( A , RR* , < ) = +oo ) -> -oo < sup ( A , RR* , < ) ) |
|
| 15 | 13 14 | syl | |- ( ( A C_ RR /\ A =/= (/) ) -> -oo < sup ( A , RR* , < ) ) |