This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering relation for the floor of half of an integer. (Contributed by NM, 1-Jan-2006) (Proof shortened by Mario Carneiro, 7-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flhalf | |- ( N e. ZZ -> N <_ ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 2 | peano2re | |- ( N e. RR -> ( N + 1 ) e. RR ) |
|
| 3 | 1 2 | syl | |- ( N e. ZZ -> ( N + 1 ) e. RR ) |
| 4 | 3 | rehalfcld | |- ( N e. ZZ -> ( ( N + 1 ) / 2 ) e. RR ) |
| 5 | flltp1 | |- ( ( ( N + 1 ) / 2 ) e. RR -> ( ( N + 1 ) / 2 ) < ( ( |_ ` ( ( N + 1 ) / 2 ) ) + 1 ) ) |
|
| 6 | 4 5 | syl | |- ( N e. ZZ -> ( ( N + 1 ) / 2 ) < ( ( |_ ` ( ( N + 1 ) / 2 ) ) + 1 ) ) |
| 7 | 4 | flcld | |- ( N e. ZZ -> ( |_ ` ( ( N + 1 ) / 2 ) ) e. ZZ ) |
| 8 | 7 | zred | |- ( N e. ZZ -> ( |_ ` ( ( N + 1 ) / 2 ) ) e. RR ) |
| 9 | 1red | |- ( N e. ZZ -> 1 e. RR ) |
|
| 10 | 8 9 | readdcld | |- ( N e. ZZ -> ( ( |_ ` ( ( N + 1 ) / 2 ) ) + 1 ) e. RR ) |
| 11 | 2rp | |- 2 e. RR+ |
|
| 12 | 11 | a1i | |- ( N e. ZZ -> 2 e. RR+ ) |
| 13 | 3 10 12 | ltdivmuld | |- ( N e. ZZ -> ( ( ( N + 1 ) / 2 ) < ( ( |_ ` ( ( N + 1 ) / 2 ) ) + 1 ) <-> ( N + 1 ) < ( 2 x. ( ( |_ ` ( ( N + 1 ) / 2 ) ) + 1 ) ) ) ) |
| 14 | 6 13 | mpbid | |- ( N e. ZZ -> ( N + 1 ) < ( 2 x. ( ( |_ ` ( ( N + 1 ) / 2 ) ) + 1 ) ) ) |
| 15 | 9 | recnd | |- ( N e. ZZ -> 1 e. CC ) |
| 16 | 15 | 2timesd | |- ( N e. ZZ -> ( 2 x. 1 ) = ( 1 + 1 ) ) |
| 17 | 16 | oveq2d | |- ( N e. ZZ -> ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + ( 2 x. 1 ) ) = ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + ( 1 + 1 ) ) ) |
| 18 | 2cnd | |- ( N e. ZZ -> 2 e. CC ) |
|
| 19 | 8 | recnd | |- ( N e. ZZ -> ( |_ ` ( ( N + 1 ) / 2 ) ) e. CC ) |
| 20 | 18 19 15 | adddid | |- ( N e. ZZ -> ( 2 x. ( ( |_ ` ( ( N + 1 ) / 2 ) ) + 1 ) ) = ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + ( 2 x. 1 ) ) ) |
| 21 | 2re | |- 2 e. RR |
|
| 22 | 21 | a1i | |- ( N e. ZZ -> 2 e. RR ) |
| 23 | 22 8 | remulcld | |- ( N e. ZZ -> ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) e. RR ) |
| 24 | 23 | recnd | |- ( N e. ZZ -> ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) e. CC ) |
| 25 | 24 15 15 | addassd | |- ( N e. ZZ -> ( ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + 1 ) + 1 ) = ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + ( 1 + 1 ) ) ) |
| 26 | 17 20 25 | 3eqtr4d | |- ( N e. ZZ -> ( 2 x. ( ( |_ ` ( ( N + 1 ) / 2 ) ) + 1 ) ) = ( ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + 1 ) + 1 ) ) |
| 27 | 14 26 | breqtrd | |- ( N e. ZZ -> ( N + 1 ) < ( ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + 1 ) + 1 ) ) |
| 28 | 23 9 | readdcld | |- ( N e. ZZ -> ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + 1 ) e. RR ) |
| 29 | 1 28 9 | ltadd1d | |- ( N e. ZZ -> ( N < ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + 1 ) <-> ( N + 1 ) < ( ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + 1 ) + 1 ) ) ) |
| 30 | 27 29 | mpbird | |- ( N e. ZZ -> N < ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + 1 ) ) |
| 31 | 2z | |- 2 e. ZZ |
|
| 32 | 31 | a1i | |- ( N e. ZZ -> 2 e. ZZ ) |
| 33 | 32 7 | zmulcld | |- ( N e. ZZ -> ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) e. ZZ ) |
| 34 | zleltp1 | |- ( ( N e. ZZ /\ ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) e. ZZ ) -> ( N <_ ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) <-> N < ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + 1 ) ) ) |
|
| 35 | 33 34 | mpdan | |- ( N e. ZZ -> ( N <_ ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) <-> N < ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + 1 ) ) ) |
| 36 | 30 35 | mpbird | |- ( N e. ZZ -> N <_ ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) ) |