This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ovolun . (Contributed by Mario Carneiro, 12-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolun.a | |- ( ph -> ( A C_ RR /\ ( vol* ` A ) e. RR ) ) |
|
| ovolun.b | |- ( ph -> ( B C_ RR /\ ( vol* ` B ) e. RR ) ) |
||
| ovolun.c | |- ( ph -> C e. RR+ ) |
||
| ovolun.s | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
||
| ovolun.t | |- T = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
||
| ovolun.u | |- U = seq 1 ( + , ( ( abs o. - ) o. H ) ) |
||
| ovolun.f1 | |- ( ph -> F e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
||
| ovolun.f2 | |- ( ph -> A C_ U. ran ( (,) o. F ) ) |
||
| ovolun.f3 | |- ( ph -> sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( C / 2 ) ) ) |
||
| ovolun.g1 | |- ( ph -> G e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
||
| ovolun.g2 | |- ( ph -> B C_ U. ran ( (,) o. G ) ) |
||
| ovolun.g3 | |- ( ph -> sup ( ran T , RR* , < ) <_ ( ( vol* ` B ) + ( C / 2 ) ) ) |
||
| ovolun.h | |- H = ( n e. NN |-> if ( ( n / 2 ) e. NN , ( G ` ( n / 2 ) ) , ( F ` ( ( n + 1 ) / 2 ) ) ) ) |
||
| Assertion | ovolunlem1 | |- ( ph -> ( vol* ` ( A u. B ) ) <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolun.a | |- ( ph -> ( A C_ RR /\ ( vol* ` A ) e. RR ) ) |
|
| 2 | ovolun.b | |- ( ph -> ( B C_ RR /\ ( vol* ` B ) e. RR ) ) |
|
| 3 | ovolun.c | |- ( ph -> C e. RR+ ) |
|
| 4 | ovolun.s | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
|
| 5 | ovolun.t | |- T = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
|
| 6 | ovolun.u | |- U = seq 1 ( + , ( ( abs o. - ) o. H ) ) |
|
| 7 | ovolun.f1 | |- ( ph -> F e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
|
| 8 | ovolun.f2 | |- ( ph -> A C_ U. ran ( (,) o. F ) ) |
|
| 9 | ovolun.f3 | |- ( ph -> sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( C / 2 ) ) ) |
|
| 10 | ovolun.g1 | |- ( ph -> G e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
|
| 11 | ovolun.g2 | |- ( ph -> B C_ U. ran ( (,) o. G ) ) |
|
| 12 | ovolun.g3 | |- ( ph -> sup ( ran T , RR* , < ) <_ ( ( vol* ` B ) + ( C / 2 ) ) ) |
|
| 13 | ovolun.h | |- H = ( n e. NN |-> if ( ( n / 2 ) e. NN , ( G ` ( n / 2 ) ) , ( F ` ( ( n + 1 ) / 2 ) ) ) ) |
|
| 14 | 1 | simpld | |- ( ph -> A C_ RR ) |
| 15 | 2 | simpld | |- ( ph -> B C_ RR ) |
| 16 | 14 15 | unssd | |- ( ph -> ( A u. B ) C_ RR ) |
| 17 | elovolmlem | |- ( G e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 18 | 10 17 | sylib | |- ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 19 | 18 | adantr | |- ( ( ph /\ n e. NN ) -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 20 | 19 | ffvelcdmda | |- ( ( ( ph /\ n e. NN ) /\ ( n / 2 ) e. NN ) -> ( G ` ( n / 2 ) ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 21 | nneo | |- ( n e. NN -> ( ( n / 2 ) e. NN <-> -. ( ( n + 1 ) / 2 ) e. NN ) ) |
|
| 22 | 21 | adantl | |- ( ( ph /\ n e. NN ) -> ( ( n / 2 ) e. NN <-> -. ( ( n + 1 ) / 2 ) e. NN ) ) |
| 23 | 22 | con2bid | |- ( ( ph /\ n e. NN ) -> ( ( ( n + 1 ) / 2 ) e. NN <-> -. ( n / 2 ) e. NN ) ) |
| 24 | 23 | biimpar | |- ( ( ( ph /\ n e. NN ) /\ -. ( n / 2 ) e. NN ) -> ( ( n + 1 ) / 2 ) e. NN ) |
| 25 | elovolmlem | |- ( F e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 26 | 7 25 | sylib | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 27 | 26 | adantr | |- ( ( ph /\ n e. NN ) -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 28 | 27 | ffvelcdmda | |- ( ( ( ph /\ n e. NN ) /\ ( ( n + 1 ) / 2 ) e. NN ) -> ( F ` ( ( n + 1 ) / 2 ) ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 29 | 24 28 | syldan | |- ( ( ( ph /\ n e. NN ) /\ -. ( n / 2 ) e. NN ) -> ( F ` ( ( n + 1 ) / 2 ) ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 30 | 20 29 | ifclda | |- ( ( ph /\ n e. NN ) -> if ( ( n / 2 ) e. NN , ( G ` ( n / 2 ) ) , ( F ` ( ( n + 1 ) / 2 ) ) ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 31 | 30 13 | fmptd | |- ( ph -> H : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 32 | eqid | |- ( ( abs o. - ) o. H ) = ( ( abs o. - ) o. H ) |
|
| 33 | 32 6 | ovolsf | |- ( H : NN --> ( <_ i^i ( RR X. RR ) ) -> U : NN --> ( 0 [,) +oo ) ) |
| 34 | 31 33 | syl | |- ( ph -> U : NN --> ( 0 [,) +oo ) ) |
| 35 | rge0ssre | |- ( 0 [,) +oo ) C_ RR |
|
| 36 | fss | |- ( ( U : NN --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> U : NN --> RR ) |
|
| 37 | 34 35 36 | sylancl | |- ( ph -> U : NN --> RR ) |
| 38 | 37 | frnd | |- ( ph -> ran U C_ RR ) |
| 39 | 1nn | |- 1 e. NN |
|
| 40 | 1z | |- 1 e. ZZ |
|
| 41 | seqfn | |- ( 1 e. ZZ -> seq 1 ( + , ( ( abs o. - ) o. H ) ) Fn ( ZZ>= ` 1 ) ) |
|
| 42 | 40 41 | mp1i | |- ( ph -> seq 1 ( + , ( ( abs o. - ) o. H ) ) Fn ( ZZ>= ` 1 ) ) |
| 43 | 6 | fneq1i | |- ( U Fn NN <-> seq 1 ( + , ( ( abs o. - ) o. H ) ) Fn NN ) |
| 44 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 45 | 44 | fneq2i | |- ( seq 1 ( + , ( ( abs o. - ) o. H ) ) Fn NN <-> seq 1 ( + , ( ( abs o. - ) o. H ) ) Fn ( ZZ>= ` 1 ) ) |
| 46 | 43 45 | bitri | |- ( U Fn NN <-> seq 1 ( + , ( ( abs o. - ) o. H ) ) Fn ( ZZ>= ` 1 ) ) |
| 47 | 42 46 | sylibr | |- ( ph -> U Fn NN ) |
| 48 | 47 | fndmd | |- ( ph -> dom U = NN ) |
| 49 | 39 48 | eleqtrrid | |- ( ph -> 1 e. dom U ) |
| 50 | 49 | ne0d | |- ( ph -> dom U =/= (/) ) |
| 51 | dm0rn0 | |- ( dom U = (/) <-> ran U = (/) ) |
|
| 52 | 51 | necon3bii | |- ( dom U =/= (/) <-> ran U =/= (/) ) |
| 53 | 50 52 | sylib | |- ( ph -> ran U =/= (/) ) |
| 54 | 1 | simprd | |- ( ph -> ( vol* ` A ) e. RR ) |
| 55 | 2 | simprd | |- ( ph -> ( vol* ` B ) e. RR ) |
| 56 | 54 55 | readdcld | |- ( ph -> ( ( vol* ` A ) + ( vol* ` B ) ) e. RR ) |
| 57 | 3 | rpred | |- ( ph -> C e. RR ) |
| 58 | 56 57 | readdcld | |- ( ph -> ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) e. RR ) |
| 59 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | ovolunlem1a | |- ( ( ph /\ k e. NN ) -> ( U ` k ) <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) ) |
| 60 | 59 | ralrimiva | |- ( ph -> A. k e. NN ( U ` k ) <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) ) |
| 61 | breq1 | |- ( z = ( U ` k ) -> ( z <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) <-> ( U ` k ) <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) ) ) |
|
| 62 | 61 | ralrn | |- ( U Fn NN -> ( A. z e. ran U z <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) <-> A. k e. NN ( U ` k ) <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) ) ) |
| 63 | 47 62 | syl | |- ( ph -> ( A. z e. ran U z <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) <-> A. k e. NN ( U ` k ) <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) ) ) |
| 64 | 60 63 | mpbird | |- ( ph -> A. z e. ran U z <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) ) |
| 65 | brralrspcev | |- ( ( ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) e. RR /\ A. z e. ran U z <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) ) -> E. k e. RR A. z e. ran U z <_ k ) |
|
| 66 | 58 64 65 | syl2anc | |- ( ph -> E. k e. RR A. z e. ran U z <_ k ) |
| 67 | ressxr | |- RR C_ RR* |
|
| 68 | 38 67 | sstrdi | |- ( ph -> ran U C_ RR* ) |
| 69 | supxrbnd2 | |- ( ran U C_ RR* -> ( E. k e. RR A. z e. ran U z <_ k <-> sup ( ran U , RR* , < ) < +oo ) ) |
|
| 70 | 68 69 | syl | |- ( ph -> ( E. k e. RR A. z e. ran U z <_ k <-> sup ( ran U , RR* , < ) < +oo ) ) |
| 71 | 66 70 | mpbid | |- ( ph -> sup ( ran U , RR* , < ) < +oo ) |
| 72 | supxrbnd | |- ( ( ran U C_ RR /\ ran U =/= (/) /\ sup ( ran U , RR* , < ) < +oo ) -> sup ( ran U , RR* , < ) e. RR ) |
|
| 73 | 38 53 71 72 | syl3anc | |- ( ph -> sup ( ran U , RR* , < ) e. RR ) |
| 74 | nncn | |- ( m e. NN -> m e. CC ) |
|
| 75 | 74 | adantl | |- ( ( ph /\ m e. NN ) -> m e. CC ) |
| 76 | 1cnd | |- ( ( ph /\ m e. NN ) -> 1 e. CC ) |
|
| 77 | 75 | 2timesd | |- ( ( ph /\ m e. NN ) -> ( 2 x. m ) = ( m + m ) ) |
| 78 | 77 | oveq1d | |- ( ( ph /\ m e. NN ) -> ( ( 2 x. m ) - 1 ) = ( ( m + m ) - 1 ) ) |
| 79 | 75 75 76 78 | assraddsubd | |- ( ( ph /\ m e. NN ) -> ( ( 2 x. m ) - 1 ) = ( m + ( m - 1 ) ) ) |
| 80 | simpr | |- ( ( ph /\ m e. NN ) -> m e. NN ) |
|
| 81 | nnm1nn0 | |- ( m e. NN -> ( m - 1 ) e. NN0 ) |
|
| 82 | nnnn0addcl | |- ( ( m e. NN /\ ( m - 1 ) e. NN0 ) -> ( m + ( m - 1 ) ) e. NN ) |
|
| 83 | 80 81 82 | syl2anc2 | |- ( ( ph /\ m e. NN ) -> ( m + ( m - 1 ) ) e. NN ) |
| 84 | 79 83 | eqeltrd | |- ( ( ph /\ m e. NN ) -> ( ( 2 x. m ) - 1 ) e. NN ) |
| 85 | oveq1 | |- ( n = ( ( 2 x. m ) - 1 ) -> ( n / 2 ) = ( ( ( 2 x. m ) - 1 ) / 2 ) ) |
|
| 86 | 85 | eleq1d | |- ( n = ( ( 2 x. m ) - 1 ) -> ( ( n / 2 ) e. NN <-> ( ( ( 2 x. m ) - 1 ) / 2 ) e. NN ) ) |
| 87 | 85 | fveq2d | |- ( n = ( ( 2 x. m ) - 1 ) -> ( G ` ( n / 2 ) ) = ( G ` ( ( ( 2 x. m ) - 1 ) / 2 ) ) ) |
| 88 | oveq1 | |- ( n = ( ( 2 x. m ) - 1 ) -> ( n + 1 ) = ( ( ( 2 x. m ) - 1 ) + 1 ) ) |
|
| 89 | 88 | fvoveq1d | |- ( n = ( ( 2 x. m ) - 1 ) -> ( F ` ( ( n + 1 ) / 2 ) ) = ( F ` ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) ) ) |
| 90 | 86 87 89 | ifbieq12d | |- ( n = ( ( 2 x. m ) - 1 ) -> if ( ( n / 2 ) e. NN , ( G ` ( n / 2 ) ) , ( F ` ( ( n + 1 ) / 2 ) ) ) = if ( ( ( ( 2 x. m ) - 1 ) / 2 ) e. NN , ( G ` ( ( ( 2 x. m ) - 1 ) / 2 ) ) , ( F ` ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) ) ) ) |
| 91 | fvex | |- ( G ` ( ( ( 2 x. m ) - 1 ) / 2 ) ) e. _V |
|
| 92 | fvex | |- ( F ` ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) ) e. _V |
|
| 93 | 91 92 | ifex | |- if ( ( ( ( 2 x. m ) - 1 ) / 2 ) e. NN , ( G ` ( ( ( 2 x. m ) - 1 ) / 2 ) ) , ( F ` ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) ) ) e. _V |
| 94 | 90 13 93 | fvmpt | |- ( ( ( 2 x. m ) - 1 ) e. NN -> ( H ` ( ( 2 x. m ) - 1 ) ) = if ( ( ( ( 2 x. m ) - 1 ) / 2 ) e. NN , ( G ` ( ( ( 2 x. m ) - 1 ) / 2 ) ) , ( F ` ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) ) ) ) |
| 95 | 84 94 | syl | |- ( ( ph /\ m e. NN ) -> ( H ` ( ( 2 x. m ) - 1 ) ) = if ( ( ( ( 2 x. m ) - 1 ) / 2 ) e. NN , ( G ` ( ( ( 2 x. m ) - 1 ) / 2 ) ) , ( F ` ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) ) ) ) |
| 96 | 2nn | |- 2 e. NN |
|
| 97 | nnmulcl | |- ( ( 2 e. NN /\ m e. NN ) -> ( 2 x. m ) e. NN ) |
|
| 98 | 96 80 97 | sylancr | |- ( ( ph /\ m e. NN ) -> ( 2 x. m ) e. NN ) |
| 99 | 98 | nncnd | |- ( ( ph /\ m e. NN ) -> ( 2 x. m ) e. CC ) |
| 100 | ax-1cn | |- 1 e. CC |
|
| 101 | npcan | |- ( ( ( 2 x. m ) e. CC /\ 1 e. CC ) -> ( ( ( 2 x. m ) - 1 ) + 1 ) = ( 2 x. m ) ) |
|
| 102 | 99 100 101 | sylancl | |- ( ( ph /\ m e. NN ) -> ( ( ( 2 x. m ) - 1 ) + 1 ) = ( 2 x. m ) ) |
| 103 | 102 | oveq1d | |- ( ( ph /\ m e. NN ) -> ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) = ( ( 2 x. m ) / 2 ) ) |
| 104 | 2cn | |- 2 e. CC |
|
| 105 | 2ne0 | |- 2 =/= 0 |
|
| 106 | divcan3 | |- ( ( m e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. m ) / 2 ) = m ) |
|
| 107 | 104 105 106 | mp3an23 | |- ( m e. CC -> ( ( 2 x. m ) / 2 ) = m ) |
| 108 | 75 107 | syl | |- ( ( ph /\ m e. NN ) -> ( ( 2 x. m ) / 2 ) = m ) |
| 109 | 103 108 | eqtrd | |- ( ( ph /\ m e. NN ) -> ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) = m ) |
| 110 | 109 80 | eqeltrd | |- ( ( ph /\ m e. NN ) -> ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) e. NN ) |
| 111 | nneo | |- ( ( ( 2 x. m ) - 1 ) e. NN -> ( ( ( ( 2 x. m ) - 1 ) / 2 ) e. NN <-> -. ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) e. NN ) ) |
|
| 112 | 84 111 | syl | |- ( ( ph /\ m e. NN ) -> ( ( ( ( 2 x. m ) - 1 ) / 2 ) e. NN <-> -. ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) e. NN ) ) |
| 113 | 112 | con2bid | |- ( ( ph /\ m e. NN ) -> ( ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) e. NN <-> -. ( ( ( 2 x. m ) - 1 ) / 2 ) e. NN ) ) |
| 114 | 110 113 | mpbid | |- ( ( ph /\ m e. NN ) -> -. ( ( ( 2 x. m ) - 1 ) / 2 ) e. NN ) |
| 115 | 114 | iffalsed | |- ( ( ph /\ m e. NN ) -> if ( ( ( ( 2 x. m ) - 1 ) / 2 ) e. NN , ( G ` ( ( ( 2 x. m ) - 1 ) / 2 ) ) , ( F ` ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) ) ) = ( F ` ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) ) ) |
| 116 | 109 | fveq2d | |- ( ( ph /\ m e. NN ) -> ( F ` ( ( ( ( 2 x. m ) - 1 ) + 1 ) / 2 ) ) = ( F ` m ) ) |
| 117 | 95 115 116 | 3eqtrd | |- ( ( ph /\ m e. NN ) -> ( H ` ( ( 2 x. m ) - 1 ) ) = ( F ` m ) ) |
| 118 | fveqeq2 | |- ( k = ( ( 2 x. m ) - 1 ) -> ( ( H ` k ) = ( F ` m ) <-> ( H ` ( ( 2 x. m ) - 1 ) ) = ( F ` m ) ) ) |
|
| 119 | 118 | rspcev | |- ( ( ( ( 2 x. m ) - 1 ) e. NN /\ ( H ` ( ( 2 x. m ) - 1 ) ) = ( F ` m ) ) -> E. k e. NN ( H ` k ) = ( F ` m ) ) |
| 120 | 84 117 119 | syl2anc | |- ( ( ph /\ m e. NN ) -> E. k e. NN ( H ` k ) = ( F ` m ) ) |
| 121 | fveq2 | |- ( ( H ` k ) = ( F ` m ) -> ( 1st ` ( H ` k ) ) = ( 1st ` ( F ` m ) ) ) |
|
| 122 | 121 | breq1d | |- ( ( H ` k ) = ( F ` m ) -> ( ( 1st ` ( H ` k ) ) < z <-> ( 1st ` ( F ` m ) ) < z ) ) |
| 123 | fveq2 | |- ( ( H ` k ) = ( F ` m ) -> ( 2nd ` ( H ` k ) ) = ( 2nd ` ( F ` m ) ) ) |
|
| 124 | 123 | breq2d | |- ( ( H ` k ) = ( F ` m ) -> ( z < ( 2nd ` ( H ` k ) ) <-> z < ( 2nd ` ( F ` m ) ) ) ) |
| 125 | 122 124 | anbi12d | |- ( ( H ` k ) = ( F ` m ) -> ( ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) <-> ( ( 1st ` ( F ` m ) ) < z /\ z < ( 2nd ` ( F ` m ) ) ) ) ) |
| 126 | 125 | biimprcd | |- ( ( ( 1st ` ( F ` m ) ) < z /\ z < ( 2nd ` ( F ` m ) ) ) -> ( ( H ` k ) = ( F ` m ) -> ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) ) ) |
| 127 | 126 | reximdv | |- ( ( ( 1st ` ( F ` m ) ) < z /\ z < ( 2nd ` ( F ` m ) ) ) -> ( E. k e. NN ( H ` k ) = ( F ` m ) -> E. k e. NN ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) ) ) |
| 128 | 120 127 | syl5com | |- ( ( ph /\ m e. NN ) -> ( ( ( 1st ` ( F ` m ) ) < z /\ z < ( 2nd ` ( F ` m ) ) ) -> E. k e. NN ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) ) ) |
| 129 | 128 | rexlimdva | |- ( ph -> ( E. m e. NN ( ( 1st ` ( F ` m ) ) < z /\ z < ( 2nd ` ( F ` m ) ) ) -> E. k e. NN ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) ) ) |
| 130 | 129 | ralimdv | |- ( ph -> ( A. z e. A E. m e. NN ( ( 1st ` ( F ` m ) ) < z /\ z < ( 2nd ` ( F ` m ) ) ) -> A. z e. A E. k e. NN ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) ) ) |
| 131 | ovolfioo | |- ( ( A C_ RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A C_ U. ran ( (,) o. F ) <-> A. z e. A E. m e. NN ( ( 1st ` ( F ` m ) ) < z /\ z < ( 2nd ` ( F ` m ) ) ) ) ) |
|
| 132 | 14 26 131 | syl2anc | |- ( ph -> ( A C_ U. ran ( (,) o. F ) <-> A. z e. A E. m e. NN ( ( 1st ` ( F ` m ) ) < z /\ z < ( 2nd ` ( F ` m ) ) ) ) ) |
| 133 | ovolfioo | |- ( ( A C_ RR /\ H : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A C_ U. ran ( (,) o. H ) <-> A. z e. A E. k e. NN ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) ) ) |
|
| 134 | 14 31 133 | syl2anc | |- ( ph -> ( A C_ U. ran ( (,) o. H ) <-> A. z e. A E. k e. NN ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) ) ) |
| 135 | 130 132 134 | 3imtr4d | |- ( ph -> ( A C_ U. ran ( (,) o. F ) -> A C_ U. ran ( (,) o. H ) ) ) |
| 136 | 8 135 | mpd | |- ( ph -> A C_ U. ran ( (,) o. H ) ) |
| 137 | oveq1 | |- ( n = ( 2 x. m ) -> ( n / 2 ) = ( ( 2 x. m ) / 2 ) ) |
|
| 138 | 137 | eleq1d | |- ( n = ( 2 x. m ) -> ( ( n / 2 ) e. NN <-> ( ( 2 x. m ) / 2 ) e. NN ) ) |
| 139 | 137 | fveq2d | |- ( n = ( 2 x. m ) -> ( G ` ( n / 2 ) ) = ( G ` ( ( 2 x. m ) / 2 ) ) ) |
| 140 | oveq1 | |- ( n = ( 2 x. m ) -> ( n + 1 ) = ( ( 2 x. m ) + 1 ) ) |
|
| 141 | 140 | fvoveq1d | |- ( n = ( 2 x. m ) -> ( F ` ( ( n + 1 ) / 2 ) ) = ( F ` ( ( ( 2 x. m ) + 1 ) / 2 ) ) ) |
| 142 | 138 139 141 | ifbieq12d | |- ( n = ( 2 x. m ) -> if ( ( n / 2 ) e. NN , ( G ` ( n / 2 ) ) , ( F ` ( ( n + 1 ) / 2 ) ) ) = if ( ( ( 2 x. m ) / 2 ) e. NN , ( G ` ( ( 2 x. m ) / 2 ) ) , ( F ` ( ( ( 2 x. m ) + 1 ) / 2 ) ) ) ) |
| 143 | fvex | |- ( G ` ( ( 2 x. m ) / 2 ) ) e. _V |
|
| 144 | fvex | |- ( F ` ( ( ( 2 x. m ) + 1 ) / 2 ) ) e. _V |
|
| 145 | 143 144 | ifex | |- if ( ( ( 2 x. m ) / 2 ) e. NN , ( G ` ( ( 2 x. m ) / 2 ) ) , ( F ` ( ( ( 2 x. m ) + 1 ) / 2 ) ) ) e. _V |
| 146 | 142 13 145 | fvmpt | |- ( ( 2 x. m ) e. NN -> ( H ` ( 2 x. m ) ) = if ( ( ( 2 x. m ) / 2 ) e. NN , ( G ` ( ( 2 x. m ) / 2 ) ) , ( F ` ( ( ( 2 x. m ) + 1 ) / 2 ) ) ) ) |
| 147 | 98 146 | syl | |- ( ( ph /\ m e. NN ) -> ( H ` ( 2 x. m ) ) = if ( ( ( 2 x. m ) / 2 ) e. NN , ( G ` ( ( 2 x. m ) / 2 ) ) , ( F ` ( ( ( 2 x. m ) + 1 ) / 2 ) ) ) ) |
| 148 | 108 80 | eqeltrd | |- ( ( ph /\ m e. NN ) -> ( ( 2 x. m ) / 2 ) e. NN ) |
| 149 | 148 | iftrued | |- ( ( ph /\ m e. NN ) -> if ( ( ( 2 x. m ) / 2 ) e. NN , ( G ` ( ( 2 x. m ) / 2 ) ) , ( F ` ( ( ( 2 x. m ) + 1 ) / 2 ) ) ) = ( G ` ( ( 2 x. m ) / 2 ) ) ) |
| 150 | 108 | fveq2d | |- ( ( ph /\ m e. NN ) -> ( G ` ( ( 2 x. m ) / 2 ) ) = ( G ` m ) ) |
| 151 | 147 149 150 | 3eqtrd | |- ( ( ph /\ m e. NN ) -> ( H ` ( 2 x. m ) ) = ( G ` m ) ) |
| 152 | fveqeq2 | |- ( k = ( 2 x. m ) -> ( ( H ` k ) = ( G ` m ) <-> ( H ` ( 2 x. m ) ) = ( G ` m ) ) ) |
|
| 153 | 152 | rspcev | |- ( ( ( 2 x. m ) e. NN /\ ( H ` ( 2 x. m ) ) = ( G ` m ) ) -> E. k e. NN ( H ` k ) = ( G ` m ) ) |
| 154 | 98 151 153 | syl2anc | |- ( ( ph /\ m e. NN ) -> E. k e. NN ( H ` k ) = ( G ` m ) ) |
| 155 | fveq2 | |- ( ( H ` k ) = ( G ` m ) -> ( 1st ` ( H ` k ) ) = ( 1st ` ( G ` m ) ) ) |
|
| 156 | 155 | breq1d | |- ( ( H ` k ) = ( G ` m ) -> ( ( 1st ` ( H ` k ) ) < z <-> ( 1st ` ( G ` m ) ) < z ) ) |
| 157 | fveq2 | |- ( ( H ` k ) = ( G ` m ) -> ( 2nd ` ( H ` k ) ) = ( 2nd ` ( G ` m ) ) ) |
|
| 158 | 157 | breq2d | |- ( ( H ` k ) = ( G ` m ) -> ( z < ( 2nd ` ( H ` k ) ) <-> z < ( 2nd ` ( G ` m ) ) ) ) |
| 159 | 156 158 | anbi12d | |- ( ( H ` k ) = ( G ` m ) -> ( ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) <-> ( ( 1st ` ( G ` m ) ) < z /\ z < ( 2nd ` ( G ` m ) ) ) ) ) |
| 160 | 159 | biimprcd | |- ( ( ( 1st ` ( G ` m ) ) < z /\ z < ( 2nd ` ( G ` m ) ) ) -> ( ( H ` k ) = ( G ` m ) -> ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) ) ) |
| 161 | 160 | reximdv | |- ( ( ( 1st ` ( G ` m ) ) < z /\ z < ( 2nd ` ( G ` m ) ) ) -> ( E. k e. NN ( H ` k ) = ( G ` m ) -> E. k e. NN ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) ) ) |
| 162 | 154 161 | syl5com | |- ( ( ph /\ m e. NN ) -> ( ( ( 1st ` ( G ` m ) ) < z /\ z < ( 2nd ` ( G ` m ) ) ) -> E. k e. NN ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) ) ) |
| 163 | 162 | rexlimdva | |- ( ph -> ( E. m e. NN ( ( 1st ` ( G ` m ) ) < z /\ z < ( 2nd ` ( G ` m ) ) ) -> E. k e. NN ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) ) ) |
| 164 | 163 | ralimdv | |- ( ph -> ( A. z e. B E. m e. NN ( ( 1st ` ( G ` m ) ) < z /\ z < ( 2nd ` ( G ` m ) ) ) -> A. z e. B E. k e. NN ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) ) ) |
| 165 | ovolfioo | |- ( ( B C_ RR /\ G : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( B C_ U. ran ( (,) o. G ) <-> A. z e. B E. m e. NN ( ( 1st ` ( G ` m ) ) < z /\ z < ( 2nd ` ( G ` m ) ) ) ) ) |
|
| 166 | 15 18 165 | syl2anc | |- ( ph -> ( B C_ U. ran ( (,) o. G ) <-> A. z e. B E. m e. NN ( ( 1st ` ( G ` m ) ) < z /\ z < ( 2nd ` ( G ` m ) ) ) ) ) |
| 167 | ovolfioo | |- ( ( B C_ RR /\ H : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( B C_ U. ran ( (,) o. H ) <-> A. z e. B E. k e. NN ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) ) ) |
|
| 168 | 15 31 167 | syl2anc | |- ( ph -> ( B C_ U. ran ( (,) o. H ) <-> A. z e. B E. k e. NN ( ( 1st ` ( H ` k ) ) < z /\ z < ( 2nd ` ( H ` k ) ) ) ) ) |
| 169 | 164 166 168 | 3imtr4d | |- ( ph -> ( B C_ U. ran ( (,) o. G ) -> B C_ U. ran ( (,) o. H ) ) ) |
| 170 | 11 169 | mpd | |- ( ph -> B C_ U. ran ( (,) o. H ) ) |
| 171 | 136 170 | unssd | |- ( ph -> ( A u. B ) C_ U. ran ( (,) o. H ) ) |
| 172 | 6 | ovollb | |- ( ( H : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( A u. B ) C_ U. ran ( (,) o. H ) ) -> ( vol* ` ( A u. B ) ) <_ sup ( ran U , RR* , < ) ) |
| 173 | 31 171 172 | syl2anc | |- ( ph -> ( vol* ` ( A u. B ) ) <_ sup ( ran U , RR* , < ) ) |
| 174 | ovollecl | |- ( ( ( A u. B ) C_ RR /\ sup ( ran U , RR* , < ) e. RR /\ ( vol* ` ( A u. B ) ) <_ sup ( ran U , RR* , < ) ) -> ( vol* ` ( A u. B ) ) e. RR ) |
|
| 175 | 16 73 173 174 | syl3anc | |- ( ph -> ( vol* ` ( A u. B ) ) e. RR ) |
| 176 | 58 | rexrd | |- ( ph -> ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) e. RR* ) |
| 177 | supxrleub | |- ( ( ran U C_ RR* /\ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) e. RR* ) -> ( sup ( ran U , RR* , < ) <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) <-> A. z e. ran U z <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) ) ) |
|
| 178 | 68 176 177 | syl2anc | |- ( ph -> ( sup ( ran U , RR* , < ) <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) <-> A. z e. ran U z <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) ) ) |
| 179 | 64 178 | mpbird | |- ( ph -> sup ( ran U , RR* , < ) <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) ) |
| 180 | 175 73 58 173 179 | letrd | |- ( ph -> ( vol* ` ( A u. B ) ) <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) ) |