This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer is even or odd but not both. (Contributed by NM, 1-Jan-2006) (Proof shortened by Mario Carneiro, 18-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nneo | |- ( N e. NN -> ( ( N / 2 ) e. NN <-> -. ( ( N + 1 ) / 2 ) e. NN ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2nn | |- ( N e. NN -> ( N + 1 ) e. NN ) |
|
| 2 | 1 | nncnd | |- ( N e. NN -> ( N + 1 ) e. CC ) |
| 3 | 2cn | |- 2 e. CC |
|
| 4 | 3 | a1i | |- ( N e. NN -> 2 e. CC ) |
| 5 | 2ne0 | |- 2 =/= 0 |
|
| 6 | 5 | a1i | |- ( N e. NN -> 2 =/= 0 ) |
| 7 | 2 4 6 | divcan2d | |- ( N e. NN -> ( 2 x. ( ( N + 1 ) / 2 ) ) = ( N + 1 ) ) |
| 8 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 9 | 8 4 6 | divcan2d | |- ( N e. NN -> ( 2 x. ( N / 2 ) ) = N ) |
| 10 | 9 | oveq1d | |- ( N e. NN -> ( ( 2 x. ( N / 2 ) ) + 1 ) = ( N + 1 ) ) |
| 11 | 7 10 | eqtr4d | |- ( N e. NN -> ( 2 x. ( ( N + 1 ) / 2 ) ) = ( ( 2 x. ( N / 2 ) ) + 1 ) ) |
| 12 | nnz | |- ( ( ( N + 1 ) / 2 ) e. NN -> ( ( N + 1 ) / 2 ) e. ZZ ) |
|
| 13 | nnz | |- ( ( N / 2 ) e. NN -> ( N / 2 ) e. ZZ ) |
|
| 14 | zneo | |- ( ( ( ( N + 1 ) / 2 ) e. ZZ /\ ( N / 2 ) e. ZZ ) -> ( 2 x. ( ( N + 1 ) / 2 ) ) =/= ( ( 2 x. ( N / 2 ) ) + 1 ) ) |
|
| 15 | 12 13 14 | syl2an | |- ( ( ( ( N + 1 ) / 2 ) e. NN /\ ( N / 2 ) e. NN ) -> ( 2 x. ( ( N + 1 ) / 2 ) ) =/= ( ( 2 x. ( N / 2 ) ) + 1 ) ) |
| 16 | 15 | expcom | |- ( ( N / 2 ) e. NN -> ( ( ( N + 1 ) / 2 ) e. NN -> ( 2 x. ( ( N + 1 ) / 2 ) ) =/= ( ( 2 x. ( N / 2 ) ) + 1 ) ) ) |
| 17 | 16 | necon2bd | |- ( ( N / 2 ) e. NN -> ( ( 2 x. ( ( N + 1 ) / 2 ) ) = ( ( 2 x. ( N / 2 ) ) + 1 ) -> -. ( ( N + 1 ) / 2 ) e. NN ) ) |
| 18 | 11 17 | syl5com | |- ( N e. NN -> ( ( N / 2 ) e. NN -> -. ( ( N + 1 ) / 2 ) e. NN ) ) |
| 19 | oveq1 | |- ( j = 1 -> ( j + 1 ) = ( 1 + 1 ) ) |
|
| 20 | 19 | oveq1d | |- ( j = 1 -> ( ( j + 1 ) / 2 ) = ( ( 1 + 1 ) / 2 ) ) |
| 21 | 20 | eleq1d | |- ( j = 1 -> ( ( ( j + 1 ) / 2 ) e. NN <-> ( ( 1 + 1 ) / 2 ) e. NN ) ) |
| 22 | oveq1 | |- ( j = 1 -> ( j / 2 ) = ( 1 / 2 ) ) |
|
| 23 | 22 | eleq1d | |- ( j = 1 -> ( ( j / 2 ) e. NN <-> ( 1 / 2 ) e. NN ) ) |
| 24 | 21 23 | orbi12d | |- ( j = 1 -> ( ( ( ( j + 1 ) / 2 ) e. NN \/ ( j / 2 ) e. NN ) <-> ( ( ( 1 + 1 ) / 2 ) e. NN \/ ( 1 / 2 ) e. NN ) ) ) |
| 25 | oveq1 | |- ( j = k -> ( j + 1 ) = ( k + 1 ) ) |
|
| 26 | 25 | oveq1d | |- ( j = k -> ( ( j + 1 ) / 2 ) = ( ( k + 1 ) / 2 ) ) |
| 27 | 26 | eleq1d | |- ( j = k -> ( ( ( j + 1 ) / 2 ) e. NN <-> ( ( k + 1 ) / 2 ) e. NN ) ) |
| 28 | oveq1 | |- ( j = k -> ( j / 2 ) = ( k / 2 ) ) |
|
| 29 | 28 | eleq1d | |- ( j = k -> ( ( j / 2 ) e. NN <-> ( k / 2 ) e. NN ) ) |
| 30 | 27 29 | orbi12d | |- ( j = k -> ( ( ( ( j + 1 ) / 2 ) e. NN \/ ( j / 2 ) e. NN ) <-> ( ( ( k + 1 ) / 2 ) e. NN \/ ( k / 2 ) e. NN ) ) ) |
| 31 | oveq1 | |- ( j = ( k + 1 ) -> ( j + 1 ) = ( ( k + 1 ) + 1 ) ) |
|
| 32 | 31 | oveq1d | |- ( j = ( k + 1 ) -> ( ( j + 1 ) / 2 ) = ( ( ( k + 1 ) + 1 ) / 2 ) ) |
| 33 | 32 | eleq1d | |- ( j = ( k + 1 ) -> ( ( ( j + 1 ) / 2 ) e. NN <-> ( ( ( k + 1 ) + 1 ) / 2 ) e. NN ) ) |
| 34 | oveq1 | |- ( j = ( k + 1 ) -> ( j / 2 ) = ( ( k + 1 ) / 2 ) ) |
|
| 35 | 34 | eleq1d | |- ( j = ( k + 1 ) -> ( ( j / 2 ) e. NN <-> ( ( k + 1 ) / 2 ) e. NN ) ) |
| 36 | 33 35 | orbi12d | |- ( j = ( k + 1 ) -> ( ( ( ( j + 1 ) / 2 ) e. NN \/ ( j / 2 ) e. NN ) <-> ( ( ( ( k + 1 ) + 1 ) / 2 ) e. NN \/ ( ( k + 1 ) / 2 ) e. NN ) ) ) |
| 37 | oveq1 | |- ( j = N -> ( j + 1 ) = ( N + 1 ) ) |
|
| 38 | 37 | oveq1d | |- ( j = N -> ( ( j + 1 ) / 2 ) = ( ( N + 1 ) / 2 ) ) |
| 39 | 38 | eleq1d | |- ( j = N -> ( ( ( j + 1 ) / 2 ) e. NN <-> ( ( N + 1 ) / 2 ) e. NN ) ) |
| 40 | oveq1 | |- ( j = N -> ( j / 2 ) = ( N / 2 ) ) |
|
| 41 | 40 | eleq1d | |- ( j = N -> ( ( j / 2 ) e. NN <-> ( N / 2 ) e. NN ) ) |
| 42 | 39 41 | orbi12d | |- ( j = N -> ( ( ( ( j + 1 ) / 2 ) e. NN \/ ( j / 2 ) e. NN ) <-> ( ( ( N + 1 ) / 2 ) e. NN \/ ( N / 2 ) e. NN ) ) ) |
| 43 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 44 | 43 | oveq1i | |- ( 2 / 2 ) = ( ( 1 + 1 ) / 2 ) |
| 45 | 2div2e1 | |- ( 2 / 2 ) = 1 |
|
| 46 | 44 45 | eqtr3i | |- ( ( 1 + 1 ) / 2 ) = 1 |
| 47 | 1nn | |- 1 e. NN |
|
| 48 | 46 47 | eqeltri | |- ( ( 1 + 1 ) / 2 ) e. NN |
| 49 | 48 | orci | |- ( ( ( 1 + 1 ) / 2 ) e. NN \/ ( 1 / 2 ) e. NN ) |
| 50 | peano2nn | |- ( ( k / 2 ) e. NN -> ( ( k / 2 ) + 1 ) e. NN ) |
|
| 51 | nncn | |- ( k e. NN -> k e. CC ) |
|
| 52 | add1p1 | |- ( k e. CC -> ( ( k + 1 ) + 1 ) = ( k + 2 ) ) |
|
| 53 | 52 | oveq1d | |- ( k e. CC -> ( ( ( k + 1 ) + 1 ) / 2 ) = ( ( k + 2 ) / 2 ) ) |
| 54 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 55 | divdir | |- ( ( k e. CC /\ 2 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( k + 2 ) / 2 ) = ( ( k / 2 ) + ( 2 / 2 ) ) ) |
|
| 56 | 3 54 55 | mp3an23 | |- ( k e. CC -> ( ( k + 2 ) / 2 ) = ( ( k / 2 ) + ( 2 / 2 ) ) ) |
| 57 | 45 | oveq2i | |- ( ( k / 2 ) + ( 2 / 2 ) ) = ( ( k / 2 ) + 1 ) |
| 58 | 56 57 | eqtrdi | |- ( k e. CC -> ( ( k + 2 ) / 2 ) = ( ( k / 2 ) + 1 ) ) |
| 59 | 53 58 | eqtrd | |- ( k e. CC -> ( ( ( k + 1 ) + 1 ) / 2 ) = ( ( k / 2 ) + 1 ) ) |
| 60 | 51 59 | syl | |- ( k e. NN -> ( ( ( k + 1 ) + 1 ) / 2 ) = ( ( k / 2 ) + 1 ) ) |
| 61 | 60 | eleq1d | |- ( k e. NN -> ( ( ( ( k + 1 ) + 1 ) / 2 ) e. NN <-> ( ( k / 2 ) + 1 ) e. NN ) ) |
| 62 | 50 61 | imbitrrid | |- ( k e. NN -> ( ( k / 2 ) e. NN -> ( ( ( k + 1 ) + 1 ) / 2 ) e. NN ) ) |
| 63 | 62 | orim2d | |- ( k e. NN -> ( ( ( ( k + 1 ) / 2 ) e. NN \/ ( k / 2 ) e. NN ) -> ( ( ( k + 1 ) / 2 ) e. NN \/ ( ( ( k + 1 ) + 1 ) / 2 ) e. NN ) ) ) |
| 64 | orcom | |- ( ( ( ( k + 1 ) / 2 ) e. NN \/ ( ( ( k + 1 ) + 1 ) / 2 ) e. NN ) <-> ( ( ( ( k + 1 ) + 1 ) / 2 ) e. NN \/ ( ( k + 1 ) / 2 ) e. NN ) ) |
|
| 65 | 63 64 | imbitrdi | |- ( k e. NN -> ( ( ( ( k + 1 ) / 2 ) e. NN \/ ( k / 2 ) e. NN ) -> ( ( ( ( k + 1 ) + 1 ) / 2 ) e. NN \/ ( ( k + 1 ) / 2 ) e. NN ) ) ) |
| 66 | 24 30 36 42 49 65 | nnind | |- ( N e. NN -> ( ( ( N + 1 ) / 2 ) e. NN \/ ( N / 2 ) e. NN ) ) |
| 67 | 66 | ord | |- ( N e. NN -> ( -. ( ( N + 1 ) / 2 ) e. NN -> ( N / 2 ) e. NN ) ) |
| 68 | 18 67 | impbid | |- ( N e. NN -> ( ( N / 2 ) e. NN <-> -. ( ( N + 1 ) / 2 ) e. NN ) ) |