This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the sequence builder function at a successor, deduction form. (Contributed by Mario Carneiro, 30-Apr-2014) (Revised by AV, 3-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqp1d.1 | |- Z = ( ZZ>= ` M ) |
|
| seqp1d.2 | |- ( ph -> N e. Z ) |
||
| seqp1d.3 | |- K = ( N + 1 ) |
||
| seqp1d.4 | |- ( ph -> ( seq M ( .+ , F ) ` N ) = A ) |
||
| seqp1d.5 | |- ( ph -> ( F ` K ) = B ) |
||
| Assertion | seqp1d | |- ( ph -> ( seq M ( .+ , F ) ` K ) = ( A .+ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqp1d.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | seqp1d.2 | |- ( ph -> N e. Z ) |
|
| 3 | seqp1d.3 | |- K = ( N + 1 ) |
|
| 4 | seqp1d.4 | |- ( ph -> ( seq M ( .+ , F ) ` N ) = A ) |
|
| 5 | seqp1d.5 | |- ( ph -> ( F ` K ) = B ) |
|
| 6 | 3 | fveq2i | |- ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` ( N + 1 ) ) |
| 7 | 6 | a1i | |- ( ph -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` ( N + 1 ) ) ) |
| 8 | 2 1 | eleqtrdi | |- ( ph -> N e. ( ZZ>= ` M ) ) |
| 9 | seqp1 | |- ( N e. ( ZZ>= ` M ) -> ( seq M ( .+ , F ) ` ( N + 1 ) ) = ( ( seq M ( .+ , F ) ` N ) .+ ( F ` ( N + 1 ) ) ) ) |
|
| 10 | 8 9 | syl | |- ( ph -> ( seq M ( .+ , F ) ` ( N + 1 ) ) = ( ( seq M ( .+ , F ) ` N ) .+ ( F ` ( N + 1 ) ) ) ) |
| 11 | 3 | fveq2i | |- ( F ` K ) = ( F ` ( N + 1 ) ) |
| 12 | 11 5 | eqtr3id | |- ( ph -> ( F ` ( N + 1 ) ) = B ) |
| 13 | 4 12 | oveq12d | |- ( ph -> ( ( seq M ( .+ , F ) ` N ) .+ ( F ` ( N + 1 ) ) ) = ( A .+ B ) ) |
| 14 | 7 10 13 | 3eqtrd | |- ( ph -> ( seq M ( .+ , F ) ` K ) = ( A .+ B ) ) |