This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for itg1add . (Contributed by Mario Carneiro, 28-Jun-2014) (Proof shortened by SN, 3-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | i1fadd.1 | |- ( ph -> F e. dom S.1 ) |
|
| i1fadd.2 | |- ( ph -> G e. dom S.1 ) |
||
| itg1add.3 | |- I = ( i e. RR , j e. RR |-> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) ) |
||
| itg1add.4 | |- P = ( + |` ( ran F X. ran G ) ) |
||
| Assertion | itg1addlem4 | |- ( ph -> ( S.1 ` ( F oF + G ) ) = sum_ y e. ran F sum_ z e. ran G ( ( y + z ) x. ( y I z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fadd.1 | |- ( ph -> F e. dom S.1 ) |
|
| 2 | i1fadd.2 | |- ( ph -> G e. dom S.1 ) |
|
| 3 | itg1add.3 | |- I = ( i e. RR , j e. RR |-> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) ) |
|
| 4 | itg1add.4 | |- P = ( + |` ( ran F X. ran G ) ) |
|
| 5 | 1 2 | i1fadd | |- ( ph -> ( F oF + G ) e. dom S.1 ) |
| 6 | ax-addf | |- + : ( CC X. CC ) --> CC |
|
| 7 | ffn | |- ( + : ( CC X. CC ) --> CC -> + Fn ( CC X. CC ) ) |
|
| 8 | 6 7 | ax-mp | |- + Fn ( CC X. CC ) |
| 9 | i1frn | |- ( F e. dom S.1 -> ran F e. Fin ) |
|
| 10 | 1 9 | syl | |- ( ph -> ran F e. Fin ) |
| 11 | i1frn | |- ( G e. dom S.1 -> ran G e. Fin ) |
|
| 12 | 2 11 | syl | |- ( ph -> ran G e. Fin ) |
| 13 | xpfi | |- ( ( ran F e. Fin /\ ran G e. Fin ) -> ( ran F X. ran G ) e. Fin ) |
|
| 14 | 10 12 13 | syl2anc | |- ( ph -> ( ran F X. ran G ) e. Fin ) |
| 15 | resfnfinfin | |- ( ( + Fn ( CC X. CC ) /\ ( ran F X. ran G ) e. Fin ) -> ( + |` ( ran F X. ran G ) ) e. Fin ) |
|
| 16 | 8 14 15 | sylancr | |- ( ph -> ( + |` ( ran F X. ran G ) ) e. Fin ) |
| 17 | 4 16 | eqeltrid | |- ( ph -> P e. Fin ) |
| 18 | rnfi | |- ( P e. Fin -> ran P e. Fin ) |
|
| 19 | 17 18 | syl | |- ( ph -> ran P e. Fin ) |
| 20 | difss | |- ( ran P \ { 0 } ) C_ ran P |
|
| 21 | ssfi | |- ( ( ran P e. Fin /\ ( ran P \ { 0 } ) C_ ran P ) -> ( ran P \ { 0 } ) e. Fin ) |
|
| 22 | 19 20 21 | sylancl | |- ( ph -> ( ran P \ { 0 } ) e. Fin ) |
| 23 | ffun | |- ( + : ( CC X. CC ) --> CC -> Fun + ) |
|
| 24 | 6 23 | ax-mp | |- Fun + |
| 25 | i1ff | |- ( F e. dom S.1 -> F : RR --> RR ) |
|
| 26 | 1 25 | syl | |- ( ph -> F : RR --> RR ) |
| 27 | 26 | frnd | |- ( ph -> ran F C_ RR ) |
| 28 | ax-resscn | |- RR C_ CC |
|
| 29 | 27 28 | sstrdi | |- ( ph -> ran F C_ CC ) |
| 30 | i1ff | |- ( G e. dom S.1 -> G : RR --> RR ) |
|
| 31 | 2 30 | syl | |- ( ph -> G : RR --> RR ) |
| 32 | 31 | frnd | |- ( ph -> ran G C_ RR ) |
| 33 | 32 28 | sstrdi | |- ( ph -> ran G C_ CC ) |
| 34 | xpss12 | |- ( ( ran F C_ CC /\ ran G C_ CC ) -> ( ran F X. ran G ) C_ ( CC X. CC ) ) |
|
| 35 | 29 33 34 | syl2anc | |- ( ph -> ( ran F X. ran G ) C_ ( CC X. CC ) ) |
| 36 | 6 | fdmi | |- dom + = ( CC X. CC ) |
| 37 | 35 36 | sseqtrrdi | |- ( ph -> ( ran F X. ran G ) C_ dom + ) |
| 38 | funfvima2 | |- ( ( Fun + /\ ( ran F X. ran G ) C_ dom + ) -> ( <. x , y >. e. ( ran F X. ran G ) -> ( + ` <. x , y >. ) e. ( + " ( ran F X. ran G ) ) ) ) |
|
| 39 | 24 37 38 | sylancr | |- ( ph -> ( <. x , y >. e. ( ran F X. ran G ) -> ( + ` <. x , y >. ) e. ( + " ( ran F X. ran G ) ) ) ) |
| 40 | opelxpi | |- ( ( x e. ran F /\ y e. ran G ) -> <. x , y >. e. ( ran F X. ran G ) ) |
|
| 41 | 39 40 | impel | |- ( ( ph /\ ( x e. ran F /\ y e. ran G ) ) -> ( + ` <. x , y >. ) e. ( + " ( ran F X. ran G ) ) ) |
| 42 | df-ov | |- ( x + y ) = ( + ` <. x , y >. ) |
|
| 43 | 4 | rneqi | |- ran P = ran ( + |` ( ran F X. ran G ) ) |
| 44 | df-ima | |- ( + " ( ran F X. ran G ) ) = ran ( + |` ( ran F X. ran G ) ) |
|
| 45 | 43 44 | eqtr4i | |- ran P = ( + " ( ran F X. ran G ) ) |
| 46 | 41 42 45 | 3eltr4g | |- ( ( ph /\ ( x e. ran F /\ y e. ran G ) ) -> ( x + y ) e. ran P ) |
| 47 | 26 | ffnd | |- ( ph -> F Fn RR ) |
| 48 | dffn3 | |- ( F Fn RR <-> F : RR --> ran F ) |
|
| 49 | 47 48 | sylib | |- ( ph -> F : RR --> ran F ) |
| 50 | 31 | ffnd | |- ( ph -> G Fn RR ) |
| 51 | dffn3 | |- ( G Fn RR <-> G : RR --> ran G ) |
|
| 52 | 50 51 | sylib | |- ( ph -> G : RR --> ran G ) |
| 53 | reex | |- RR e. _V |
|
| 54 | 53 | a1i | |- ( ph -> RR e. _V ) |
| 55 | inidm | |- ( RR i^i RR ) = RR |
|
| 56 | 46 49 52 54 54 55 | off | |- ( ph -> ( F oF + G ) : RR --> ran P ) |
| 57 | 56 | frnd | |- ( ph -> ran ( F oF + G ) C_ ran P ) |
| 58 | 57 | ssdifd | |- ( ph -> ( ran ( F oF + G ) \ { 0 } ) C_ ( ran P \ { 0 } ) ) |
| 59 | 27 | sselda | |- ( ( ph /\ y e. ran F ) -> y e. RR ) |
| 60 | 32 | sselda | |- ( ( ph /\ z e. ran G ) -> z e. RR ) |
| 61 | 59 60 | anim12dan | |- ( ( ph /\ ( y e. ran F /\ z e. ran G ) ) -> ( y e. RR /\ z e. RR ) ) |
| 62 | readdcl | |- ( ( y e. RR /\ z e. RR ) -> ( y + z ) e. RR ) |
|
| 63 | 61 62 | syl | |- ( ( ph /\ ( y e. ran F /\ z e. ran G ) ) -> ( y + z ) e. RR ) |
| 64 | 63 | ralrimivva | |- ( ph -> A. y e. ran F A. z e. ran G ( y + z ) e. RR ) |
| 65 | funimassov | |- ( ( Fun + /\ ( ran F X. ran G ) C_ dom + ) -> ( ( + " ( ran F X. ran G ) ) C_ RR <-> A. y e. ran F A. z e. ran G ( y + z ) e. RR ) ) |
|
| 66 | 24 37 65 | sylancr | |- ( ph -> ( ( + " ( ran F X. ran G ) ) C_ RR <-> A. y e. ran F A. z e. ran G ( y + z ) e. RR ) ) |
| 67 | 64 66 | mpbird | |- ( ph -> ( + " ( ran F X. ran G ) ) C_ RR ) |
| 68 | 45 67 | eqsstrid | |- ( ph -> ran P C_ RR ) |
| 69 | 68 | ssdifd | |- ( ph -> ( ran P \ { 0 } ) C_ ( RR \ { 0 } ) ) |
| 70 | itg1val2 | |- ( ( ( F oF + G ) e. dom S.1 /\ ( ( ran P \ { 0 } ) e. Fin /\ ( ran ( F oF + G ) \ { 0 } ) C_ ( ran P \ { 0 } ) /\ ( ran P \ { 0 } ) C_ ( RR \ { 0 } ) ) ) -> ( S.1 ` ( F oF + G ) ) = sum_ w e. ( ran P \ { 0 } ) ( w x. ( vol ` ( `' ( F oF + G ) " { w } ) ) ) ) |
|
| 71 | 5 22 58 69 70 | syl13anc | |- ( ph -> ( S.1 ` ( F oF + G ) ) = sum_ w e. ( ran P \ { 0 } ) ( w x. ( vol ` ( `' ( F oF + G ) " { w } ) ) ) ) |
| 72 | 31 | adantr | |- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> G : RR --> RR ) |
| 73 | 12 | adantr | |- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ran G e. Fin ) |
| 74 | inss2 | |- ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) C_ ( `' G " { z } ) |
|
| 75 | 74 | a1i | |- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) C_ ( `' G " { z } ) ) |
| 76 | i1fima | |- ( F e. dom S.1 -> ( `' F " { ( w - z ) } ) e. dom vol ) |
|
| 77 | 1 76 | syl | |- ( ph -> ( `' F " { ( w - z ) } ) e. dom vol ) |
| 78 | i1fima | |- ( G e. dom S.1 -> ( `' G " { z } ) e. dom vol ) |
|
| 79 | 2 78 | syl | |- ( ph -> ( `' G " { z } ) e. dom vol ) |
| 80 | inmbl | |- ( ( ( `' F " { ( w - z ) } ) e. dom vol /\ ( `' G " { z } ) e. dom vol ) -> ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) |
|
| 81 | 77 79 80 | syl2anc | |- ( ph -> ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) |
| 82 | 81 | ad2antrr | |- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) |
| 83 | 20 68 | sstrid | |- ( ph -> ( ran P \ { 0 } ) C_ RR ) |
| 84 | 83 | sselda | |- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> w e. RR ) |
| 85 | 84 | adantr | |- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> w e. RR ) |
| 86 | 60 | adantlr | |- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> z e. RR ) |
| 87 | 85 86 | resubcld | |- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( w - z ) e. RR ) |
| 88 | 85 | recnd | |- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> w e. CC ) |
| 89 | 86 | recnd | |- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> z e. CC ) |
| 90 | 88 89 | npcand | |- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( ( w - z ) + z ) = w ) |
| 91 | eldifsni | |- ( w e. ( ran P \ { 0 } ) -> w =/= 0 ) |
|
| 92 | 91 | ad2antlr | |- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> w =/= 0 ) |
| 93 | 90 92 | eqnetrd | |- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( ( w - z ) + z ) =/= 0 ) |
| 94 | oveq12 | |- ( ( ( w - z ) = 0 /\ z = 0 ) -> ( ( w - z ) + z ) = ( 0 + 0 ) ) |
|
| 95 | 00id | |- ( 0 + 0 ) = 0 |
|
| 96 | 94 95 | eqtrdi | |- ( ( ( w - z ) = 0 /\ z = 0 ) -> ( ( w - z ) + z ) = 0 ) |
| 97 | 96 | necon3ai | |- ( ( ( w - z ) + z ) =/= 0 -> -. ( ( w - z ) = 0 /\ z = 0 ) ) |
| 98 | 93 97 | syl | |- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> -. ( ( w - z ) = 0 /\ z = 0 ) ) |
| 99 | 1 2 3 | itg1addlem3 | |- ( ( ( ( w - z ) e. RR /\ z e. RR ) /\ -. ( ( w - z ) = 0 /\ z = 0 ) ) -> ( ( w - z ) I z ) = ( vol ` ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) ) |
| 100 | 87 86 98 99 | syl21anc | |- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( ( w - z ) I z ) = ( vol ` ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) ) |
| 101 | 1 2 3 | itg1addlem2 | |- ( ph -> I : ( RR X. RR ) --> RR ) |
| 102 | 101 | ad2antrr | |- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> I : ( RR X. RR ) --> RR ) |
| 103 | 102 87 86 | fovcdmd | |- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( ( w - z ) I z ) e. RR ) |
| 104 | 100 103 | eqeltrrd | |- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( vol ` ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) |
| 105 | 72 73 75 82 104 | itg1addlem1 | |- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ( vol ` U_ z e. ran G ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) = sum_ z e. ran G ( vol ` ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) ) |
| 106 | 84 | recnd | |- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> w e. CC ) |
| 107 | 1 2 | i1faddlem | |- ( ( ph /\ w e. CC ) -> ( `' ( F oF + G ) " { w } ) = U_ z e. ran G ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) |
| 108 | 106 107 | syldan | |- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ( `' ( F oF + G ) " { w } ) = U_ z e. ran G ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) |
| 109 | 108 | fveq2d | |- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ( vol ` ( `' ( F oF + G ) " { w } ) ) = ( vol ` U_ z e. ran G ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) ) |
| 110 | 100 | sumeq2dv | |- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> sum_ z e. ran G ( ( w - z ) I z ) = sum_ z e. ran G ( vol ` ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) ) |
| 111 | 105 109 110 | 3eqtr4d | |- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ( vol ` ( `' ( F oF + G ) " { w } ) ) = sum_ z e. ran G ( ( w - z ) I z ) ) |
| 112 | 111 | oveq2d | |- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ( w x. ( vol ` ( `' ( F oF + G ) " { w } ) ) ) = ( w x. sum_ z e. ran G ( ( w - z ) I z ) ) ) |
| 113 | 103 | recnd | |- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( ( w - z ) I z ) e. CC ) |
| 114 | 73 106 113 | fsummulc2 | |- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ( w x. sum_ z e. ran G ( ( w - z ) I z ) ) = sum_ z e. ran G ( w x. ( ( w - z ) I z ) ) ) |
| 115 | 112 114 | eqtrd | |- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ( w x. ( vol ` ( `' ( F oF + G ) " { w } ) ) ) = sum_ z e. ran G ( w x. ( ( w - z ) I z ) ) ) |
| 116 | 115 | sumeq2dv | |- ( ph -> sum_ w e. ( ran P \ { 0 } ) ( w x. ( vol ` ( `' ( F oF + G ) " { w } ) ) ) = sum_ w e. ( ran P \ { 0 } ) sum_ z e. ran G ( w x. ( ( w - z ) I z ) ) ) |
| 117 | 88 113 | mulcld | |- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( w x. ( ( w - z ) I z ) ) e. CC ) |
| 118 | 117 | anasss | |- ( ( ph /\ ( w e. ( ran P \ { 0 } ) /\ z e. ran G ) ) -> ( w x. ( ( w - z ) I z ) ) e. CC ) |
| 119 | 22 12 118 | fsumcom | |- ( ph -> sum_ w e. ( ran P \ { 0 } ) sum_ z e. ran G ( w x. ( ( w - z ) I z ) ) = sum_ z e. ran G sum_ w e. ( ran P \ { 0 } ) ( w x. ( ( w - z ) I z ) ) ) |
| 120 | 71 116 119 | 3eqtrd | |- ( ph -> ( S.1 ` ( F oF + G ) ) = sum_ z e. ran G sum_ w e. ( ran P \ { 0 } ) ( w x. ( ( w - z ) I z ) ) ) |
| 121 | oveq1 | |- ( y = ( w - z ) -> ( y + z ) = ( ( w - z ) + z ) ) |
|
| 122 | oveq1 | |- ( y = ( w - z ) -> ( y I z ) = ( ( w - z ) I z ) ) |
|
| 123 | 121 122 | oveq12d | |- ( y = ( w - z ) -> ( ( y + z ) x. ( y I z ) ) = ( ( ( w - z ) + z ) x. ( ( w - z ) I z ) ) ) |
| 124 | 19 | adantr | |- ( ( ph /\ z e. ran G ) -> ran P e. Fin ) |
| 125 | 68 | adantr | |- ( ( ph /\ z e. ran G ) -> ran P C_ RR ) |
| 126 | 125 | sselda | |- ( ( ( ph /\ z e. ran G ) /\ v e. ran P ) -> v e. RR ) |
| 127 | 60 | adantr | |- ( ( ( ph /\ z e. ran G ) /\ v e. ran P ) -> z e. RR ) |
| 128 | 126 127 | resubcld | |- ( ( ( ph /\ z e. ran G ) /\ v e. ran P ) -> ( v - z ) e. RR ) |
| 129 | 128 | ex | |- ( ( ph /\ z e. ran G ) -> ( v e. ran P -> ( v - z ) e. RR ) ) |
| 130 | 126 | recnd | |- ( ( ( ph /\ z e. ran G ) /\ v e. ran P ) -> v e. CC ) |
| 131 | 130 | adantrr | |- ( ( ( ph /\ z e. ran G ) /\ ( v e. ran P /\ y e. ran P ) ) -> v e. CC ) |
| 132 | 68 | sselda | |- ( ( ph /\ y e. ran P ) -> y e. RR ) |
| 133 | 132 | ad2ant2rl | |- ( ( ( ph /\ z e. ran G ) /\ ( v e. ran P /\ y e. ran P ) ) -> y e. RR ) |
| 134 | 133 | recnd | |- ( ( ( ph /\ z e. ran G ) /\ ( v e. ran P /\ y e. ran P ) ) -> y e. CC ) |
| 135 | 60 | recnd | |- ( ( ph /\ z e. ran G ) -> z e. CC ) |
| 136 | 135 | adantr | |- ( ( ( ph /\ z e. ran G ) /\ ( v e. ran P /\ y e. ran P ) ) -> z e. CC ) |
| 137 | 131 134 136 | subcan2ad | |- ( ( ( ph /\ z e. ran G ) /\ ( v e. ran P /\ y e. ran P ) ) -> ( ( v - z ) = ( y - z ) <-> v = y ) ) |
| 138 | 137 | ex | |- ( ( ph /\ z e. ran G ) -> ( ( v e. ran P /\ y e. ran P ) -> ( ( v - z ) = ( y - z ) <-> v = y ) ) ) |
| 139 | 129 138 | dom2lem | |- ( ( ph /\ z e. ran G ) -> ( v e. ran P |-> ( v - z ) ) : ran P -1-1-> RR ) |
| 140 | f1f1orn | |- ( ( v e. ran P |-> ( v - z ) ) : ran P -1-1-> RR -> ( v e. ran P |-> ( v - z ) ) : ran P -1-1-onto-> ran ( v e. ran P |-> ( v - z ) ) ) |
|
| 141 | 139 140 | syl | |- ( ( ph /\ z e. ran G ) -> ( v e. ran P |-> ( v - z ) ) : ran P -1-1-onto-> ran ( v e. ran P |-> ( v - z ) ) ) |
| 142 | oveq1 | |- ( v = w -> ( v - z ) = ( w - z ) ) |
|
| 143 | eqid | |- ( v e. ran P |-> ( v - z ) ) = ( v e. ran P |-> ( v - z ) ) |
|
| 144 | ovex | |- ( w - z ) e. _V |
|
| 145 | 142 143 144 | fvmpt | |- ( w e. ran P -> ( ( v e. ran P |-> ( v - z ) ) ` w ) = ( w - z ) ) |
| 146 | 145 | adantl | |- ( ( ( ph /\ z e. ran G ) /\ w e. ran P ) -> ( ( v e. ran P |-> ( v - z ) ) ` w ) = ( w - z ) ) |
| 147 | f1f | |- ( ( v e. ran P |-> ( v - z ) ) : ran P -1-1-> RR -> ( v e. ran P |-> ( v - z ) ) : ran P --> RR ) |
|
| 148 | frn | |- ( ( v e. ran P |-> ( v - z ) ) : ran P --> RR -> ran ( v e. ran P |-> ( v - z ) ) C_ RR ) |
|
| 149 | 139 147 148 | 3syl | |- ( ( ph /\ z e. ran G ) -> ran ( v e. ran P |-> ( v - z ) ) C_ RR ) |
| 150 | 149 | sselda | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran ( v e. ran P |-> ( v - z ) ) ) -> y e. RR ) |
| 151 | 60 | adantr | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran ( v e. ran P |-> ( v - z ) ) ) -> z e. RR ) |
| 152 | 150 151 | readdcld | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran ( v e. ran P |-> ( v - z ) ) ) -> ( y + z ) e. RR ) |
| 153 | 101 | ad2antrr | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran ( v e. ran P |-> ( v - z ) ) ) -> I : ( RR X. RR ) --> RR ) |
| 154 | 153 150 151 | fovcdmd | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran ( v e. ran P |-> ( v - z ) ) ) -> ( y I z ) e. RR ) |
| 155 | 152 154 | remulcld | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran ( v e. ran P |-> ( v - z ) ) ) -> ( ( y + z ) x. ( y I z ) ) e. RR ) |
| 156 | 155 | recnd | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran ( v e. ran P |-> ( v - z ) ) ) -> ( ( y + z ) x. ( y I z ) ) e. CC ) |
| 157 | 123 124 141 146 156 | fsumf1o | |- ( ( ph /\ z e. ran G ) -> sum_ y e. ran ( v e. ran P |-> ( v - z ) ) ( ( y + z ) x. ( y I z ) ) = sum_ w e. ran P ( ( ( w - z ) + z ) x. ( ( w - z ) I z ) ) ) |
| 158 | 125 | sselda | |- ( ( ( ph /\ z e. ran G ) /\ w e. ran P ) -> w e. RR ) |
| 159 | 158 | recnd | |- ( ( ( ph /\ z e. ran G ) /\ w e. ran P ) -> w e. CC ) |
| 160 | 135 | adantr | |- ( ( ( ph /\ z e. ran G ) /\ w e. ran P ) -> z e. CC ) |
| 161 | 159 160 | npcand | |- ( ( ( ph /\ z e. ran G ) /\ w e. ran P ) -> ( ( w - z ) + z ) = w ) |
| 162 | 161 | oveq1d | |- ( ( ( ph /\ z e. ran G ) /\ w e. ran P ) -> ( ( ( w - z ) + z ) x. ( ( w - z ) I z ) ) = ( w x. ( ( w - z ) I z ) ) ) |
| 163 | 162 | sumeq2dv | |- ( ( ph /\ z e. ran G ) -> sum_ w e. ran P ( ( ( w - z ) + z ) x. ( ( w - z ) I z ) ) = sum_ w e. ran P ( w x. ( ( w - z ) I z ) ) ) |
| 164 | 157 163 | eqtrd | |- ( ( ph /\ z e. ran G ) -> sum_ y e. ran ( v e. ran P |-> ( v - z ) ) ( ( y + z ) x. ( y I z ) ) = sum_ w e. ran P ( w x. ( ( w - z ) I z ) ) ) |
| 165 | 37 | ad2antrr | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( ran F X. ran G ) C_ dom + ) |
| 166 | simpr | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> y e. ran F ) |
|
| 167 | simplr | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> z e. ran G ) |
|
| 168 | 166 167 | opelxpd | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> <. y , z >. e. ( ran F X. ran G ) ) |
| 169 | funfvima2 | |- ( ( Fun + /\ ( ran F X. ran G ) C_ dom + ) -> ( <. y , z >. e. ( ran F X. ran G ) -> ( + ` <. y , z >. ) e. ( + " ( ran F X. ran G ) ) ) ) |
|
| 170 | 24 169 | mpan | |- ( ( ran F X. ran G ) C_ dom + -> ( <. y , z >. e. ( ran F X. ran G ) -> ( + ` <. y , z >. ) e. ( + " ( ran F X. ran G ) ) ) ) |
| 171 | 165 168 170 | sylc | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( + ` <. y , z >. ) e. ( + " ( ran F X. ran G ) ) ) |
| 172 | df-ov | |- ( y + z ) = ( + ` <. y , z >. ) |
|
| 173 | 171 172 45 | 3eltr4g | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( y + z ) e. ran P ) |
| 174 | 59 | adantlr | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> y e. RR ) |
| 175 | 174 | recnd | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> y e. CC ) |
| 176 | 135 | adantr | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> z e. CC ) |
| 177 | 175 176 | pncand | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( ( y + z ) - z ) = y ) |
| 178 | 177 | eqcomd | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> y = ( ( y + z ) - z ) ) |
| 179 | oveq1 | |- ( v = ( y + z ) -> ( v - z ) = ( ( y + z ) - z ) ) |
|
| 180 | 179 | rspceeqv | |- ( ( ( y + z ) e. ran P /\ y = ( ( y + z ) - z ) ) -> E. v e. ran P y = ( v - z ) ) |
| 181 | 173 178 180 | syl2anc | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> E. v e. ran P y = ( v - z ) ) |
| 182 | 181 | ralrimiva | |- ( ( ph /\ z e. ran G ) -> A. y e. ran F E. v e. ran P y = ( v - z ) ) |
| 183 | ssabral | |- ( ran F C_ { y | E. v e. ran P y = ( v - z ) } <-> A. y e. ran F E. v e. ran P y = ( v - z ) ) |
|
| 184 | 182 183 | sylibr | |- ( ( ph /\ z e. ran G ) -> ran F C_ { y | E. v e. ran P y = ( v - z ) } ) |
| 185 | 143 | rnmpt | |- ran ( v e. ran P |-> ( v - z ) ) = { y | E. v e. ran P y = ( v - z ) } |
| 186 | 184 185 | sseqtrrdi | |- ( ( ph /\ z e. ran G ) -> ran F C_ ran ( v e. ran P |-> ( v - z ) ) ) |
| 187 | 60 | adantr | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> z e. RR ) |
| 188 | 174 187 | readdcld | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( y + z ) e. RR ) |
| 189 | 101 | ad2antrr | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> I : ( RR X. RR ) --> RR ) |
| 190 | 189 174 187 | fovcdmd | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( y I z ) e. RR ) |
| 191 | 188 190 | remulcld | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( ( y + z ) x. ( y I z ) ) e. RR ) |
| 192 | 191 | recnd | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( ( y + z ) x. ( y I z ) ) e. CC ) |
| 193 | 149 | ssdifd | |- ( ( ph /\ z e. ran G ) -> ( ran ( v e. ran P |-> ( v - z ) ) \ ran F ) C_ ( RR \ ran F ) ) |
| 194 | 193 | sselda | |- ( ( ( ph /\ z e. ran G ) /\ y e. ( ran ( v e. ran P |-> ( v - z ) ) \ ran F ) ) -> y e. ( RR \ ran F ) ) |
| 195 | eldifi | |- ( y e. ( RR \ ran F ) -> y e. RR ) |
|
| 196 | 195 | ad2antrl | |- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> y e. RR ) |
| 197 | 60 | adantr | |- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> z e. RR ) |
| 198 | simprr | |- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> -. ( y = 0 /\ z = 0 ) ) |
|
| 199 | 1 2 3 | itg1addlem3 | |- ( ( ( y e. RR /\ z e. RR ) /\ -. ( y = 0 /\ z = 0 ) ) -> ( y I z ) = ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
| 200 | 196 197 198 199 | syl21anc | |- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( y I z ) = ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
| 201 | inss1 | |- ( ( `' F " { y } ) i^i ( `' G " { z } ) ) C_ ( `' F " { y } ) |
|
| 202 | eldifn | |- ( y e. ( RR \ ran F ) -> -. y e. ran F ) |
|
| 203 | 202 | ad2antrl | |- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> -. y e. ran F ) |
| 204 | vex | |- v e. _V |
|
| 205 | 204 | eliniseg | |- ( y e. _V -> ( v e. ( `' F " { y } ) <-> v F y ) ) |
| 206 | 205 | elv | |- ( v e. ( `' F " { y } ) <-> v F y ) |
| 207 | vex | |- y e. _V |
|
| 208 | 204 207 | brelrn | |- ( v F y -> y e. ran F ) |
| 209 | 206 208 | sylbi | |- ( v e. ( `' F " { y } ) -> y e. ran F ) |
| 210 | 203 209 | nsyl | |- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> -. v e. ( `' F " { y } ) ) |
| 211 | 210 | pm2.21d | |- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( v e. ( `' F " { y } ) -> v e. (/) ) ) |
| 212 | 211 | ssrdv | |- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( `' F " { y } ) C_ (/) ) |
| 213 | 201 212 | sstrid | |- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) C_ (/) ) |
| 214 | ss0 | |- ( ( ( `' F " { y } ) i^i ( `' G " { z } ) ) C_ (/) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) = (/) ) |
|
| 215 | 213 214 | syl | |- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) = (/) ) |
| 216 | 215 | fveq2d | |- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) = ( vol ` (/) ) ) |
| 217 | 0mbl | |- (/) e. dom vol |
|
| 218 | mblvol | |- ( (/) e. dom vol -> ( vol ` (/) ) = ( vol* ` (/) ) ) |
|
| 219 | 217 218 | ax-mp | |- ( vol ` (/) ) = ( vol* ` (/) ) |
| 220 | ovol0 | |- ( vol* ` (/) ) = 0 |
|
| 221 | 219 220 | eqtri | |- ( vol ` (/) ) = 0 |
| 222 | 216 221 | eqtrdi | |- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) = 0 ) |
| 223 | 200 222 | eqtrd | |- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( y I z ) = 0 ) |
| 224 | 223 | oveq2d | |- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( ( y + z ) x. ( y I z ) ) = ( ( y + z ) x. 0 ) ) |
| 225 | 196 197 | readdcld | |- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( y + z ) e. RR ) |
| 226 | 225 | recnd | |- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( y + z ) e. CC ) |
| 227 | 226 | mul01d | |- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( ( y + z ) x. 0 ) = 0 ) |
| 228 | 224 227 | eqtrd | |- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( ( y + z ) x. ( y I z ) ) = 0 ) |
| 229 | 228 | expr | |- ( ( ( ph /\ z e. ran G ) /\ y e. ( RR \ ran F ) ) -> ( -. ( y = 0 /\ z = 0 ) -> ( ( y + z ) x. ( y I z ) ) = 0 ) ) |
| 230 | oveq12 | |- ( ( y = 0 /\ z = 0 ) -> ( y + z ) = ( 0 + 0 ) ) |
|
| 231 | 230 95 | eqtrdi | |- ( ( y = 0 /\ z = 0 ) -> ( y + z ) = 0 ) |
| 232 | oveq12 | |- ( ( y = 0 /\ z = 0 ) -> ( y I z ) = ( 0 I 0 ) ) |
|
| 233 | 0re | |- 0 e. RR |
|
| 234 | iftrue | |- ( ( i = 0 /\ j = 0 ) -> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) = 0 ) |
|
| 235 | c0ex | |- 0 e. _V |
|
| 236 | 234 3 235 | ovmpoa | |- ( ( 0 e. RR /\ 0 e. RR ) -> ( 0 I 0 ) = 0 ) |
| 237 | 233 233 236 | mp2an | |- ( 0 I 0 ) = 0 |
| 238 | 232 237 | eqtrdi | |- ( ( y = 0 /\ z = 0 ) -> ( y I z ) = 0 ) |
| 239 | 231 238 | oveq12d | |- ( ( y = 0 /\ z = 0 ) -> ( ( y + z ) x. ( y I z ) ) = ( 0 x. 0 ) ) |
| 240 | 0cn | |- 0 e. CC |
|
| 241 | 240 | mul01i | |- ( 0 x. 0 ) = 0 |
| 242 | 239 241 | eqtrdi | |- ( ( y = 0 /\ z = 0 ) -> ( ( y + z ) x. ( y I z ) ) = 0 ) |
| 243 | 229 242 | pm2.61d2 | |- ( ( ( ph /\ z e. ran G ) /\ y e. ( RR \ ran F ) ) -> ( ( y + z ) x. ( y I z ) ) = 0 ) |
| 244 | 194 243 | syldan | |- ( ( ( ph /\ z e. ran G ) /\ y e. ( ran ( v e. ran P |-> ( v - z ) ) \ ran F ) ) -> ( ( y + z ) x. ( y I z ) ) = 0 ) |
| 245 | f1ofo | |- ( ( v e. ran P |-> ( v - z ) ) : ran P -1-1-onto-> ran ( v e. ran P |-> ( v - z ) ) -> ( v e. ran P |-> ( v - z ) ) : ran P -onto-> ran ( v e. ran P |-> ( v - z ) ) ) |
|
| 246 | 141 245 | syl | |- ( ( ph /\ z e. ran G ) -> ( v e. ran P |-> ( v - z ) ) : ran P -onto-> ran ( v e. ran P |-> ( v - z ) ) ) |
| 247 | fofi | |- ( ( ran P e. Fin /\ ( v e. ran P |-> ( v - z ) ) : ran P -onto-> ran ( v e. ran P |-> ( v - z ) ) ) -> ran ( v e. ran P |-> ( v - z ) ) e. Fin ) |
|
| 248 | 124 246 247 | syl2anc | |- ( ( ph /\ z e. ran G ) -> ran ( v e. ran P |-> ( v - z ) ) e. Fin ) |
| 249 | 186 192 244 248 | fsumss | |- ( ( ph /\ z e. ran G ) -> sum_ y e. ran F ( ( y + z ) x. ( y I z ) ) = sum_ y e. ran ( v e. ran P |-> ( v - z ) ) ( ( y + z ) x. ( y I z ) ) ) |
| 250 | 20 | a1i | |- ( ( ph /\ z e. ran G ) -> ( ran P \ { 0 } ) C_ ran P ) |
| 251 | 117 | an32s | |- ( ( ( ph /\ z e. ran G ) /\ w e. ( ran P \ { 0 } ) ) -> ( w x. ( ( w - z ) I z ) ) e. CC ) |
| 252 | dfin4 | |- ( ran P i^i { 0 } ) = ( ran P \ ( ran P \ { 0 } ) ) |
|
| 253 | inss2 | |- ( ran P i^i { 0 } ) C_ { 0 } |
|
| 254 | 252 253 | eqsstrri | |- ( ran P \ ( ran P \ { 0 } ) ) C_ { 0 } |
| 255 | 254 | sseli | |- ( w e. ( ran P \ ( ran P \ { 0 } ) ) -> w e. { 0 } ) |
| 256 | elsni | |- ( w e. { 0 } -> w = 0 ) |
|
| 257 | 256 | adantl | |- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> w = 0 ) |
| 258 | 257 | oveq1d | |- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> ( w x. ( ( w - z ) I z ) ) = ( 0 x. ( ( w - z ) I z ) ) ) |
| 259 | 101 | ad2antrr | |- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> I : ( RR X. RR ) --> RR ) |
| 260 | 257 233 | eqeltrdi | |- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> w e. RR ) |
| 261 | 60 | adantr | |- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> z e. RR ) |
| 262 | 260 261 | resubcld | |- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> ( w - z ) e. RR ) |
| 263 | 259 262 261 | fovcdmd | |- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> ( ( w - z ) I z ) e. RR ) |
| 264 | 263 | recnd | |- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> ( ( w - z ) I z ) e. CC ) |
| 265 | 264 | mul02d | |- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> ( 0 x. ( ( w - z ) I z ) ) = 0 ) |
| 266 | 258 265 | eqtrd | |- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> ( w x. ( ( w - z ) I z ) ) = 0 ) |
| 267 | 255 266 | sylan2 | |- ( ( ( ph /\ z e. ran G ) /\ w e. ( ran P \ ( ran P \ { 0 } ) ) ) -> ( w x. ( ( w - z ) I z ) ) = 0 ) |
| 268 | 250 251 267 124 | fsumss | |- ( ( ph /\ z e. ran G ) -> sum_ w e. ( ran P \ { 0 } ) ( w x. ( ( w - z ) I z ) ) = sum_ w e. ran P ( w x. ( ( w - z ) I z ) ) ) |
| 269 | 164 249 268 | 3eqtr4d | |- ( ( ph /\ z e. ran G ) -> sum_ y e. ran F ( ( y + z ) x. ( y I z ) ) = sum_ w e. ( ran P \ { 0 } ) ( w x. ( ( w - z ) I z ) ) ) |
| 270 | 269 | sumeq2dv | |- ( ph -> sum_ z e. ran G sum_ y e. ran F ( ( y + z ) x. ( y I z ) ) = sum_ z e. ran G sum_ w e. ( ran P \ { 0 } ) ( w x. ( ( w - z ) I z ) ) ) |
| 271 | 192 | anasss | |- ( ( ph /\ ( z e. ran G /\ y e. ran F ) ) -> ( ( y + z ) x. ( y I z ) ) e. CC ) |
| 272 | 12 10 271 | fsumcom | |- ( ph -> sum_ z e. ran G sum_ y e. ran F ( ( y + z ) x. ( y I z ) ) = sum_ y e. ran F sum_ z e. ran G ( ( y + z ) x. ( y I z ) ) ) |
| 273 | 120 270 272 | 3eqtr2d | |- ( ph -> ( S.1 ` ( F oF + G ) ) = sum_ y e. ran F sum_ z e. ran G ( ( y + z ) x. ( y I z ) ) ) |