This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for itg1add . (Contributed by Mario Carneiro, 28-Jun-2014) (Proof shortened by SN, 3-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | i1fadd.1 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | |
| i1fadd.2 | ⊢ ( 𝜑 → 𝐺 ∈ dom ∫1 ) | ||
| itg1add.3 | ⊢ 𝐼 = ( 𝑖 ∈ ℝ , 𝑗 ∈ ℝ ↦ if ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) ) | ||
| itg1add.4 | ⊢ 𝑃 = ( + ↾ ( ran 𝐹 × ran 𝐺 ) ) | ||
| Assertion | itg1addlem4 | ⊢ ( 𝜑 → ( ∫1 ‘ ( 𝐹 ∘f + 𝐺 ) ) = Σ 𝑦 ∈ ran 𝐹 Σ 𝑧 ∈ ran 𝐺 ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fadd.1 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | |
| 2 | i1fadd.2 | ⊢ ( 𝜑 → 𝐺 ∈ dom ∫1 ) | |
| 3 | itg1add.3 | ⊢ 𝐼 = ( 𝑖 ∈ ℝ , 𝑗 ∈ ℝ ↦ if ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) ) | |
| 4 | itg1add.4 | ⊢ 𝑃 = ( + ↾ ( ran 𝐹 × ran 𝐺 ) ) | |
| 5 | 1 2 | i1fadd | ⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) ∈ dom ∫1 ) |
| 6 | ax-addf | ⊢ + : ( ℂ × ℂ ) ⟶ ℂ | |
| 7 | ffn | ⊢ ( + : ( ℂ × ℂ ) ⟶ ℂ → + Fn ( ℂ × ℂ ) ) | |
| 8 | 6 7 | ax-mp | ⊢ + Fn ( ℂ × ℂ ) |
| 9 | i1frn | ⊢ ( 𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin ) | |
| 10 | 1 9 | syl | ⊢ ( 𝜑 → ran 𝐹 ∈ Fin ) |
| 11 | i1frn | ⊢ ( 𝐺 ∈ dom ∫1 → ran 𝐺 ∈ Fin ) | |
| 12 | 2 11 | syl | ⊢ ( 𝜑 → ran 𝐺 ∈ Fin ) |
| 13 | xpfi | ⊢ ( ( ran 𝐹 ∈ Fin ∧ ran 𝐺 ∈ Fin ) → ( ran 𝐹 × ran 𝐺 ) ∈ Fin ) | |
| 14 | 10 12 13 | syl2anc | ⊢ ( 𝜑 → ( ran 𝐹 × ran 𝐺 ) ∈ Fin ) |
| 15 | resfnfinfin | ⊢ ( ( + Fn ( ℂ × ℂ ) ∧ ( ran 𝐹 × ran 𝐺 ) ∈ Fin ) → ( + ↾ ( ran 𝐹 × ran 𝐺 ) ) ∈ Fin ) | |
| 16 | 8 14 15 | sylancr | ⊢ ( 𝜑 → ( + ↾ ( ran 𝐹 × ran 𝐺 ) ) ∈ Fin ) |
| 17 | 4 16 | eqeltrid | ⊢ ( 𝜑 → 𝑃 ∈ Fin ) |
| 18 | rnfi | ⊢ ( 𝑃 ∈ Fin → ran 𝑃 ∈ Fin ) | |
| 19 | 17 18 | syl | ⊢ ( 𝜑 → ran 𝑃 ∈ Fin ) |
| 20 | difss | ⊢ ( ran 𝑃 ∖ { 0 } ) ⊆ ran 𝑃 | |
| 21 | ssfi | ⊢ ( ( ran 𝑃 ∈ Fin ∧ ( ran 𝑃 ∖ { 0 } ) ⊆ ran 𝑃 ) → ( ran 𝑃 ∖ { 0 } ) ∈ Fin ) | |
| 22 | 19 20 21 | sylancl | ⊢ ( 𝜑 → ( ran 𝑃 ∖ { 0 } ) ∈ Fin ) |
| 23 | ffun | ⊢ ( + : ( ℂ × ℂ ) ⟶ ℂ → Fun + ) | |
| 24 | 6 23 | ax-mp | ⊢ Fun + |
| 25 | i1ff | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) | |
| 26 | 1 25 | syl | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 27 | 26 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
| 28 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 29 | 27 28 | sstrdi | ⊢ ( 𝜑 → ran 𝐹 ⊆ ℂ ) |
| 30 | i1ff | ⊢ ( 𝐺 ∈ dom ∫1 → 𝐺 : ℝ ⟶ ℝ ) | |
| 31 | 2 30 | syl | ⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ℝ ) |
| 32 | 31 | frnd | ⊢ ( 𝜑 → ran 𝐺 ⊆ ℝ ) |
| 33 | 32 28 | sstrdi | ⊢ ( 𝜑 → ran 𝐺 ⊆ ℂ ) |
| 34 | xpss12 | ⊢ ( ( ran 𝐹 ⊆ ℂ ∧ ran 𝐺 ⊆ ℂ ) → ( ran 𝐹 × ran 𝐺 ) ⊆ ( ℂ × ℂ ) ) | |
| 35 | 29 33 34 | syl2anc | ⊢ ( 𝜑 → ( ran 𝐹 × ran 𝐺 ) ⊆ ( ℂ × ℂ ) ) |
| 36 | 6 | fdmi | ⊢ dom + = ( ℂ × ℂ ) |
| 37 | 35 36 | sseqtrrdi | ⊢ ( 𝜑 → ( ran 𝐹 × ran 𝐺 ) ⊆ dom + ) |
| 38 | funfvima2 | ⊢ ( ( Fun + ∧ ( ran 𝐹 × ran 𝐺 ) ⊆ dom + ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ran 𝐹 × ran 𝐺 ) → ( + ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( + “ ( ran 𝐹 × ran 𝐺 ) ) ) ) | |
| 39 | 24 37 38 | sylancr | ⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ ( ran 𝐹 × ran 𝐺 ) → ( + ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( + “ ( ran 𝐹 × ran 𝐺 ) ) ) ) |
| 40 | opelxpi | ⊢ ( ( 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺 ) → 〈 𝑥 , 𝑦 〉 ∈ ( ran 𝐹 × ran 𝐺 ) ) | |
| 41 | 39 40 | impel | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺 ) ) → ( + ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( + “ ( ran 𝐹 × ran 𝐺 ) ) ) |
| 42 | df-ov | ⊢ ( 𝑥 + 𝑦 ) = ( + ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 43 | 4 | rneqi | ⊢ ran 𝑃 = ran ( + ↾ ( ran 𝐹 × ran 𝐺 ) ) |
| 44 | df-ima | ⊢ ( + “ ( ran 𝐹 × ran 𝐺 ) ) = ran ( + ↾ ( ran 𝐹 × ran 𝐺 ) ) | |
| 45 | 43 44 | eqtr4i | ⊢ ran 𝑃 = ( + “ ( ran 𝐹 × ran 𝐺 ) ) |
| 46 | 41 42 45 | 3eltr4g | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺 ) ) → ( 𝑥 + 𝑦 ) ∈ ran 𝑃 ) |
| 47 | 26 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ℝ ) |
| 48 | dffn3 | ⊢ ( 𝐹 Fn ℝ ↔ 𝐹 : ℝ ⟶ ran 𝐹 ) | |
| 49 | 47 48 | sylib | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ran 𝐹 ) |
| 50 | 31 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn ℝ ) |
| 51 | dffn3 | ⊢ ( 𝐺 Fn ℝ ↔ 𝐺 : ℝ ⟶ ran 𝐺 ) | |
| 52 | 50 51 | sylib | ⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ran 𝐺 ) |
| 53 | reex | ⊢ ℝ ∈ V | |
| 54 | 53 | a1i | ⊢ ( 𝜑 → ℝ ∈ V ) |
| 55 | inidm | ⊢ ( ℝ ∩ ℝ ) = ℝ | |
| 56 | 46 49 52 54 54 55 | off | ⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) : ℝ ⟶ ran 𝑃 ) |
| 57 | 56 | frnd | ⊢ ( 𝜑 → ran ( 𝐹 ∘f + 𝐺 ) ⊆ ran 𝑃 ) |
| 58 | 57 | ssdifd | ⊢ ( 𝜑 → ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ⊆ ( ran 𝑃 ∖ { 0 } ) ) |
| 59 | 27 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ) → 𝑦 ∈ ℝ ) |
| 60 | 32 | sselda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → 𝑧 ∈ ℝ ) |
| 61 | 59 60 | anim12dan | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐺 ) ) → ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) |
| 62 | readdcl | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑦 + 𝑧 ) ∈ ℝ ) | |
| 63 | 61 62 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐺 ) ) → ( 𝑦 + 𝑧 ) ∈ ℝ ) |
| 64 | 63 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ran 𝐹 ∀ 𝑧 ∈ ran 𝐺 ( 𝑦 + 𝑧 ) ∈ ℝ ) |
| 65 | funimassov | ⊢ ( ( Fun + ∧ ( ran 𝐹 × ran 𝐺 ) ⊆ dom + ) → ( ( + “ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ℝ ↔ ∀ 𝑦 ∈ ran 𝐹 ∀ 𝑧 ∈ ran 𝐺 ( 𝑦 + 𝑧 ) ∈ ℝ ) ) | |
| 66 | 24 37 65 | sylancr | ⊢ ( 𝜑 → ( ( + “ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ℝ ↔ ∀ 𝑦 ∈ ran 𝐹 ∀ 𝑧 ∈ ran 𝐺 ( 𝑦 + 𝑧 ) ∈ ℝ ) ) |
| 67 | 64 66 | mpbird | ⊢ ( 𝜑 → ( + “ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ℝ ) |
| 68 | 45 67 | eqsstrid | ⊢ ( 𝜑 → ran 𝑃 ⊆ ℝ ) |
| 69 | 68 | ssdifd | ⊢ ( 𝜑 → ( ran 𝑃 ∖ { 0 } ) ⊆ ( ℝ ∖ { 0 } ) ) |
| 70 | itg1val2 | ⊢ ( ( ( 𝐹 ∘f + 𝐺 ) ∈ dom ∫1 ∧ ( ( ran 𝑃 ∖ { 0 } ) ∈ Fin ∧ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ⊆ ( ran 𝑃 ∖ { 0 } ) ∧ ( ran 𝑃 ∖ { 0 } ) ⊆ ( ℝ ∖ { 0 } ) ) ) → ( ∫1 ‘ ( 𝐹 ∘f + 𝐺 ) ) = Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ( 𝑤 · ( vol ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑤 } ) ) ) ) | |
| 71 | 5 22 58 69 70 | syl13anc | ⊢ ( 𝜑 → ( ∫1 ‘ ( 𝐹 ∘f + 𝐺 ) ) = Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ( 𝑤 · ( vol ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑤 } ) ) ) ) |
| 72 | 31 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → 𝐺 : ℝ ⟶ ℝ ) |
| 73 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → ran 𝐺 ∈ Fin ) |
| 74 | inss2 | ⊢ ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ( ◡ 𝐺 “ { 𝑧 } ) | |
| 75 | 74 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ( ◡ 𝐺 “ { 𝑧 } ) ) |
| 76 | i1fima | ⊢ ( 𝐹 ∈ dom ∫1 → ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∈ dom vol ) | |
| 77 | 1 76 | syl | ⊢ ( 𝜑 → ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∈ dom vol ) |
| 78 | i1fima | ⊢ ( 𝐺 ∈ dom ∫1 → ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) | |
| 79 | 2 78 | syl | ⊢ ( 𝜑 → ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) |
| 80 | inmbl | ⊢ ( ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∈ dom vol ∧ ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) → ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) | |
| 81 | 77 79 80 | syl2anc | ⊢ ( 𝜑 → ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) |
| 82 | 81 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) |
| 83 | 20 68 | sstrid | ⊢ ( 𝜑 → ( ran 𝑃 ∖ { 0 } ) ⊆ ℝ ) |
| 84 | 83 | sselda | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → 𝑤 ∈ ℝ ) |
| 85 | 84 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑤 ∈ ℝ ) |
| 86 | 60 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑧 ∈ ℝ ) |
| 87 | 85 86 | resubcld | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑤 − 𝑧 ) ∈ ℝ ) |
| 88 | 85 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑤 ∈ ℂ ) |
| 89 | 86 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑧 ∈ ℂ ) |
| 90 | 88 89 | npcand | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( 𝑤 − 𝑧 ) + 𝑧 ) = 𝑤 ) |
| 91 | eldifsni | ⊢ ( 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) → 𝑤 ≠ 0 ) | |
| 92 | 91 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑤 ≠ 0 ) |
| 93 | 90 92 | eqnetrd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( 𝑤 − 𝑧 ) + 𝑧 ) ≠ 0 ) |
| 94 | oveq12 | ⊢ ( ( ( 𝑤 − 𝑧 ) = 0 ∧ 𝑧 = 0 ) → ( ( 𝑤 − 𝑧 ) + 𝑧 ) = ( 0 + 0 ) ) | |
| 95 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 96 | 94 95 | eqtrdi | ⊢ ( ( ( 𝑤 − 𝑧 ) = 0 ∧ 𝑧 = 0 ) → ( ( 𝑤 − 𝑧 ) + 𝑧 ) = 0 ) |
| 97 | 96 | necon3ai | ⊢ ( ( ( 𝑤 − 𝑧 ) + 𝑧 ) ≠ 0 → ¬ ( ( 𝑤 − 𝑧 ) = 0 ∧ 𝑧 = 0 ) ) |
| 98 | 93 97 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ¬ ( ( 𝑤 − 𝑧 ) = 0 ∧ 𝑧 = 0 ) ) |
| 99 | 1 2 3 | itg1addlem3 | ⊢ ( ( ( ( 𝑤 − 𝑧 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ¬ ( ( 𝑤 − 𝑧 ) = 0 ∧ 𝑧 = 0 ) ) → ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) = ( vol ‘ ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 100 | 87 86 98 99 | syl21anc | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) = ( vol ‘ ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 101 | 1 2 3 | itg1addlem2 | ⊢ ( 𝜑 → 𝐼 : ( ℝ × ℝ ) ⟶ ℝ ) |
| 102 | 101 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝐼 : ( ℝ × ℝ ) ⟶ ℝ ) |
| 103 | 102 87 86 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ∈ ℝ ) |
| 104 | 100 103 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( vol ‘ ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) |
| 105 | 72 73 75 82 104 | itg1addlem1 | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → ( vol ‘ ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) = Σ 𝑧 ∈ ran 𝐺 ( vol ‘ ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 106 | 84 | recnd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → 𝑤 ∈ ℂ ) |
| 107 | 1 2 | i1faddlem | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑤 } ) = ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) |
| 108 | 106 107 | syldan | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑤 } ) = ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) |
| 109 | 108 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → ( vol ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑤 } ) ) = ( vol ‘ ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 110 | 100 | sumeq2dv | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → Σ 𝑧 ∈ ran 𝐺 ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) = Σ 𝑧 ∈ ran 𝐺 ( vol ‘ ( ( ◡ 𝐹 “ { ( 𝑤 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 111 | 105 109 110 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → ( vol ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑤 } ) ) = Σ 𝑧 ∈ ran 𝐺 ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) |
| 112 | 111 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → ( 𝑤 · ( vol ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑤 } ) ) ) = ( 𝑤 · Σ 𝑧 ∈ ran 𝐺 ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 113 | 103 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ∈ ℂ ) |
| 114 | 73 106 113 | fsummulc2 | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → ( 𝑤 · Σ 𝑧 ∈ ran 𝐺 ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) = Σ 𝑧 ∈ ran 𝐺 ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 115 | 112 114 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → ( 𝑤 · ( vol ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑤 } ) ) ) = Σ 𝑧 ∈ ran 𝐺 ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 116 | 115 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ( 𝑤 · ( vol ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑤 } ) ) ) = Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) Σ 𝑧 ∈ ran 𝐺 ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 117 | 88 113 | mulcld | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ∈ ℂ ) |
| 118 | 117 | anasss | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ∧ 𝑧 ∈ ran 𝐺 ) ) → ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ∈ ℂ ) |
| 119 | 22 12 118 | fsumcom | ⊢ ( 𝜑 → Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) Σ 𝑧 ∈ ran 𝐺 ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) = Σ 𝑧 ∈ ran 𝐺 Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 120 | 71 116 119 | 3eqtrd | ⊢ ( 𝜑 → ( ∫1 ‘ ( 𝐹 ∘f + 𝐺 ) ) = Σ 𝑧 ∈ ran 𝐺 Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 121 | oveq1 | ⊢ ( 𝑦 = ( 𝑤 − 𝑧 ) → ( 𝑦 + 𝑧 ) = ( ( 𝑤 − 𝑧 ) + 𝑧 ) ) | |
| 122 | oveq1 | ⊢ ( 𝑦 = ( 𝑤 − 𝑧 ) → ( 𝑦 𝐼 𝑧 ) = ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) | |
| 123 | 121 122 | oveq12d | ⊢ ( 𝑦 = ( 𝑤 − 𝑧 ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = ( ( ( 𝑤 − 𝑧 ) + 𝑧 ) · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 124 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ran 𝑃 ∈ Fin ) |
| 125 | 68 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ran 𝑃 ⊆ ℝ ) |
| 126 | 125 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑣 ∈ ran 𝑃 ) → 𝑣 ∈ ℝ ) |
| 127 | 60 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑣 ∈ ran 𝑃 ) → 𝑧 ∈ ℝ ) |
| 128 | 126 127 | resubcld | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑣 ∈ ran 𝑃 ) → ( 𝑣 − 𝑧 ) ∈ ℝ ) |
| 129 | 128 | ex | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑣 ∈ ran 𝑃 → ( 𝑣 − 𝑧 ) ∈ ℝ ) ) |
| 130 | 126 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑣 ∈ ran 𝑃 ) → 𝑣 ∈ ℂ ) |
| 131 | 130 | adantrr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃 ) ) → 𝑣 ∈ ℂ ) |
| 132 | 68 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑃 ) → 𝑦 ∈ ℝ ) |
| 133 | 132 | ad2ant2rl | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃 ) ) → 𝑦 ∈ ℝ ) |
| 134 | 133 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃 ) ) → 𝑦 ∈ ℂ ) |
| 135 | 60 | recnd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → 𝑧 ∈ ℂ ) |
| 136 | 135 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃 ) ) → 𝑧 ∈ ℂ ) |
| 137 | 131 134 136 | subcan2ad | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃 ) ) → ( ( 𝑣 − 𝑧 ) = ( 𝑦 − 𝑧 ) ↔ 𝑣 = 𝑦 ) ) |
| 138 | 137 | ex | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ( ( 𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃 ) → ( ( 𝑣 − 𝑧 ) = ( 𝑦 − 𝑧 ) ↔ 𝑣 = 𝑦 ) ) ) |
| 139 | 129 138 | dom2lem | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 –1-1→ ℝ ) |
| 140 | f1f1orn | ⊢ ( ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 –1-1→ ℝ → ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 –1-1-onto→ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) | |
| 141 | 139 140 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 –1-1-onto→ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) |
| 142 | oveq1 | ⊢ ( 𝑣 = 𝑤 → ( 𝑣 − 𝑧 ) = ( 𝑤 − 𝑧 ) ) | |
| 143 | eqid | ⊢ ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) = ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) | |
| 144 | ovex | ⊢ ( 𝑤 − 𝑧 ) ∈ V | |
| 145 | 142 143 144 | fvmpt | ⊢ ( 𝑤 ∈ ran 𝑃 → ( ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ‘ 𝑤 ) = ( 𝑤 − 𝑧 ) ) |
| 146 | 145 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ ran 𝑃 ) → ( ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ‘ 𝑤 ) = ( 𝑤 − 𝑧 ) ) |
| 147 | f1f | ⊢ ( ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 –1-1→ ℝ → ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 ⟶ ℝ ) | |
| 148 | frn | ⊢ ( ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 ⟶ ℝ → ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ⊆ ℝ ) | |
| 149 | 139 147 148 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ⊆ ℝ ) |
| 150 | 149 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) → 𝑦 ∈ ℝ ) |
| 151 | 60 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) → 𝑧 ∈ ℝ ) |
| 152 | 150 151 | readdcld | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) → ( 𝑦 + 𝑧 ) ∈ ℝ ) |
| 153 | 101 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) → 𝐼 : ( ℝ × ℝ ) ⟶ ℝ ) |
| 154 | 153 150 151 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) → ( 𝑦 𝐼 𝑧 ) ∈ ℝ ) |
| 155 | 152 154 | remulcld | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) ∈ ℝ ) |
| 156 | 155 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) ∈ ℂ ) |
| 157 | 123 124 141 146 156 | fsumf1o | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → Σ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = Σ 𝑤 ∈ ran 𝑃 ( ( ( 𝑤 − 𝑧 ) + 𝑧 ) · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 158 | 125 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ ran 𝑃 ) → 𝑤 ∈ ℝ ) |
| 159 | 158 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ ran 𝑃 ) → 𝑤 ∈ ℂ ) |
| 160 | 135 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ ran 𝑃 ) → 𝑧 ∈ ℂ ) |
| 161 | 159 160 | npcand | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ ran 𝑃 ) → ( ( 𝑤 − 𝑧 ) + 𝑧 ) = 𝑤 ) |
| 162 | 161 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ ran 𝑃 ) → ( ( ( 𝑤 − 𝑧 ) + 𝑧 ) · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) = ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 163 | 162 | sumeq2dv | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → Σ 𝑤 ∈ ran 𝑃 ( ( ( 𝑤 − 𝑧 ) + 𝑧 ) · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) = Σ 𝑤 ∈ ran 𝑃 ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 164 | 157 163 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → Σ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = Σ 𝑤 ∈ ran 𝑃 ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 165 | 37 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( ran 𝐹 × ran 𝐺 ) ⊆ dom + ) |
| 166 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑦 ∈ ran 𝐹 ) | |
| 167 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑧 ∈ ran 𝐺 ) | |
| 168 | 166 167 | opelxpd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 〈 𝑦 , 𝑧 〉 ∈ ( ran 𝐹 × ran 𝐺 ) ) |
| 169 | funfvima2 | ⊢ ( ( Fun + ∧ ( ran 𝐹 × ran 𝐺 ) ⊆ dom + ) → ( 〈 𝑦 , 𝑧 〉 ∈ ( ran 𝐹 × ran 𝐺 ) → ( + ‘ 〈 𝑦 , 𝑧 〉 ) ∈ ( + “ ( ran 𝐹 × ran 𝐺 ) ) ) ) | |
| 170 | 24 169 | mpan | ⊢ ( ( ran 𝐹 × ran 𝐺 ) ⊆ dom + → ( 〈 𝑦 , 𝑧 〉 ∈ ( ran 𝐹 × ran 𝐺 ) → ( + ‘ 〈 𝑦 , 𝑧 〉 ) ∈ ( + “ ( ran 𝐹 × ran 𝐺 ) ) ) ) |
| 171 | 165 168 170 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( + ‘ 〈 𝑦 , 𝑧 〉 ) ∈ ( + “ ( ran 𝐹 × ran 𝐺 ) ) ) |
| 172 | df-ov | ⊢ ( 𝑦 + 𝑧 ) = ( + ‘ 〈 𝑦 , 𝑧 〉 ) | |
| 173 | 171 172 45 | 3eltr4g | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑦 + 𝑧 ) ∈ ran 𝑃 ) |
| 174 | 59 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑦 ∈ ℝ ) |
| 175 | 174 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑦 ∈ ℂ ) |
| 176 | 135 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑧 ∈ ℂ ) |
| 177 | 175 176 | pncand | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( ( 𝑦 + 𝑧 ) − 𝑧 ) = 𝑦 ) |
| 178 | 177 | eqcomd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑦 = ( ( 𝑦 + 𝑧 ) − 𝑧 ) ) |
| 179 | oveq1 | ⊢ ( 𝑣 = ( 𝑦 + 𝑧 ) → ( 𝑣 − 𝑧 ) = ( ( 𝑦 + 𝑧 ) − 𝑧 ) ) | |
| 180 | 179 | rspceeqv | ⊢ ( ( ( 𝑦 + 𝑧 ) ∈ ran 𝑃 ∧ 𝑦 = ( ( 𝑦 + 𝑧 ) − 𝑧 ) ) → ∃ 𝑣 ∈ ran 𝑃 𝑦 = ( 𝑣 − 𝑧 ) ) |
| 181 | 173 178 180 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ∃ 𝑣 ∈ ran 𝑃 𝑦 = ( 𝑣 − 𝑧 ) ) |
| 182 | 181 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ∀ 𝑦 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝑃 𝑦 = ( 𝑣 − 𝑧 ) ) |
| 183 | ssabral | ⊢ ( ran 𝐹 ⊆ { 𝑦 ∣ ∃ 𝑣 ∈ ran 𝑃 𝑦 = ( 𝑣 − 𝑧 ) } ↔ ∀ 𝑦 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝑃 𝑦 = ( 𝑣 − 𝑧 ) ) | |
| 184 | 182 183 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ran 𝐹 ⊆ { 𝑦 ∣ ∃ 𝑣 ∈ ran 𝑃 𝑦 = ( 𝑣 − 𝑧 ) } ) |
| 185 | 143 | rnmpt | ⊢ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) = { 𝑦 ∣ ∃ 𝑣 ∈ ran 𝑃 𝑦 = ( 𝑣 − 𝑧 ) } |
| 186 | 184 185 | sseqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ran 𝐹 ⊆ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) |
| 187 | 60 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑧 ∈ ℝ ) |
| 188 | 174 187 | readdcld | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑦 + 𝑧 ) ∈ ℝ ) |
| 189 | 101 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝐼 : ( ℝ × ℝ ) ⟶ ℝ ) |
| 190 | 189 174 187 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑦 𝐼 𝑧 ) ∈ ℝ ) |
| 191 | 188 190 | remulcld | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) ∈ ℝ ) |
| 192 | 191 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) ∈ ℂ ) |
| 193 | 149 | ssdifd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ( ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ∖ ran 𝐹 ) ⊆ ( ℝ ∖ ran 𝐹 ) ) |
| 194 | 193 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ( ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ∖ ran 𝐹 ) ) → 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ) |
| 195 | eldifi | ⊢ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) → 𝑦 ∈ ℝ ) | |
| 196 | 195 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → 𝑦 ∈ ℝ ) |
| 197 | 60 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → 𝑧 ∈ ℝ ) |
| 198 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) | |
| 199 | 1 2 3 | itg1addlem3 | ⊢ ( ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) → ( 𝑦 𝐼 𝑧 ) = ( vol ‘ ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 200 | 196 197 198 199 | syl21anc | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( 𝑦 𝐼 𝑧 ) = ( vol ‘ ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 201 | inss1 | ⊢ ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ( ◡ 𝐹 “ { 𝑦 } ) | |
| 202 | eldifn | ⊢ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) → ¬ 𝑦 ∈ ran 𝐹 ) | |
| 203 | 202 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ¬ 𝑦 ∈ ran 𝐹 ) |
| 204 | vex | ⊢ 𝑣 ∈ V | |
| 205 | 204 | eliniseg | ⊢ ( 𝑦 ∈ V → ( 𝑣 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ↔ 𝑣 𝐹 𝑦 ) ) |
| 206 | 205 | elv | ⊢ ( 𝑣 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ↔ 𝑣 𝐹 𝑦 ) |
| 207 | vex | ⊢ 𝑦 ∈ V | |
| 208 | 204 207 | brelrn | ⊢ ( 𝑣 𝐹 𝑦 → 𝑦 ∈ ran 𝐹 ) |
| 209 | 206 208 | sylbi | ⊢ ( 𝑣 ∈ ( ◡ 𝐹 “ { 𝑦 } ) → 𝑦 ∈ ran 𝐹 ) |
| 210 | 203 209 | nsyl | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ¬ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ) |
| 211 | 210 | pm2.21d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( 𝑣 ∈ ( ◡ 𝐹 “ { 𝑦 } ) → 𝑣 ∈ ∅ ) ) |
| 212 | 211 | ssrdv | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( ◡ 𝐹 “ { 𝑦 } ) ⊆ ∅ ) |
| 213 | 201 212 | sstrid | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ∅ ) |
| 214 | ss0 | ⊢ ( ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ∅ → ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) = ∅ ) | |
| 215 | 213 214 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) = ∅ ) |
| 216 | 215 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( vol ‘ ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) = ( vol ‘ ∅ ) ) |
| 217 | 0mbl | ⊢ ∅ ∈ dom vol | |
| 218 | mblvol | ⊢ ( ∅ ∈ dom vol → ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) ) | |
| 219 | 217 218 | ax-mp | ⊢ ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) |
| 220 | ovol0 | ⊢ ( vol* ‘ ∅ ) = 0 | |
| 221 | 219 220 | eqtri | ⊢ ( vol ‘ ∅ ) = 0 |
| 222 | 216 221 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( vol ‘ ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) = 0 ) |
| 223 | 200 222 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( 𝑦 𝐼 𝑧 ) = 0 ) |
| 224 | 223 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = ( ( 𝑦 + 𝑧 ) · 0 ) ) |
| 225 | 196 197 | readdcld | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( 𝑦 + 𝑧 ) ∈ ℝ ) |
| 226 | 225 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( 𝑦 + 𝑧 ) ∈ ℂ ) |
| 227 | 226 | mul01d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( ( 𝑦 + 𝑧 ) · 0 ) = 0 ) |
| 228 | 224 227 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ ( 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = 0 ) |
| 229 | 228 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ) → ( ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = 0 ) ) |
| 230 | oveq12 | ⊢ ( ( 𝑦 = 0 ∧ 𝑧 = 0 ) → ( 𝑦 + 𝑧 ) = ( 0 + 0 ) ) | |
| 231 | 230 95 | eqtrdi | ⊢ ( ( 𝑦 = 0 ∧ 𝑧 = 0 ) → ( 𝑦 + 𝑧 ) = 0 ) |
| 232 | oveq12 | ⊢ ( ( 𝑦 = 0 ∧ 𝑧 = 0 ) → ( 𝑦 𝐼 𝑧 ) = ( 0 𝐼 0 ) ) | |
| 233 | 0re | ⊢ 0 ∈ ℝ | |
| 234 | iftrue | ⊢ ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) → if ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) = 0 ) | |
| 235 | c0ex | ⊢ 0 ∈ V | |
| 236 | 234 3 235 | ovmpoa | ⊢ ( ( 0 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 0 𝐼 0 ) = 0 ) |
| 237 | 233 233 236 | mp2an | ⊢ ( 0 𝐼 0 ) = 0 |
| 238 | 232 237 | eqtrdi | ⊢ ( ( 𝑦 = 0 ∧ 𝑧 = 0 ) → ( 𝑦 𝐼 𝑧 ) = 0 ) |
| 239 | 231 238 | oveq12d | ⊢ ( ( 𝑦 = 0 ∧ 𝑧 = 0 ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = ( 0 · 0 ) ) |
| 240 | 0cn | ⊢ 0 ∈ ℂ | |
| 241 | 240 | mul01i | ⊢ ( 0 · 0 ) = 0 |
| 242 | 239 241 | eqtrdi | ⊢ ( ( 𝑦 = 0 ∧ 𝑧 = 0 ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = 0 ) |
| 243 | 229 242 | pm2.61d2 | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ( ℝ ∖ ran 𝐹 ) ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = 0 ) |
| 244 | 194 243 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ( ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ∖ ran 𝐹 ) ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = 0 ) |
| 245 | f1ofo | ⊢ ( ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 –1-1-onto→ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) → ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 –onto→ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) | |
| 246 | 141 245 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 –onto→ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) |
| 247 | fofi | ⊢ ( ( ran 𝑃 ∈ Fin ∧ ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) : ran 𝑃 –onto→ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ) → ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ∈ Fin ) | |
| 248 | 124 246 247 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ∈ Fin ) |
| 249 | 186 192 244 248 | fsumss | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → Σ 𝑦 ∈ ran 𝐹 ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = Σ 𝑦 ∈ ran ( 𝑣 ∈ ran 𝑃 ↦ ( 𝑣 − 𝑧 ) ) ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) ) |
| 250 | 20 | a1i | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ( ran 𝑃 ∖ { 0 } ) ⊆ ran 𝑃 ) |
| 251 | 117 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ) → ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ∈ ℂ ) |
| 252 | dfin4 | ⊢ ( ran 𝑃 ∩ { 0 } ) = ( ran 𝑃 ∖ ( ran 𝑃 ∖ { 0 } ) ) | |
| 253 | inss2 | ⊢ ( ran 𝑃 ∩ { 0 } ) ⊆ { 0 } | |
| 254 | 252 253 | eqsstrri | ⊢ ( ran 𝑃 ∖ ( ran 𝑃 ∖ { 0 } ) ) ⊆ { 0 } |
| 255 | 254 | sseli | ⊢ ( 𝑤 ∈ ( ran 𝑃 ∖ ( ran 𝑃 ∖ { 0 } ) ) → 𝑤 ∈ { 0 } ) |
| 256 | elsni | ⊢ ( 𝑤 ∈ { 0 } → 𝑤 = 0 ) | |
| 257 | 256 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → 𝑤 = 0 ) |
| 258 | 257 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) = ( 0 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 259 | 101 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → 𝐼 : ( ℝ × ℝ ) ⟶ ℝ ) |
| 260 | 257 233 | eqeltrdi | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → 𝑤 ∈ ℝ ) |
| 261 | 60 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → 𝑧 ∈ ℝ ) |
| 262 | 260 261 | resubcld | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → ( 𝑤 − 𝑧 ) ∈ ℝ ) |
| 263 | 259 262 261 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ∈ ℝ ) |
| 264 | 263 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ∈ ℂ ) |
| 265 | 264 | mul02d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → ( 0 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) = 0 ) |
| 266 | 258 265 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ { 0 } ) → ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) = 0 ) |
| 267 | 255 266 | sylan2 | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑤 ∈ ( ran 𝑃 ∖ ( ran 𝑃 ∖ { 0 } ) ) ) → ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) = 0 ) |
| 268 | 250 251 267 124 | fsumss | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) = Σ 𝑤 ∈ ran 𝑃 ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 269 | 164 249 268 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → Σ 𝑦 ∈ ran 𝐹 ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 270 | 269 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑧 ∈ ran 𝐺 Σ 𝑦 ∈ ran 𝐹 ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = Σ 𝑧 ∈ ran 𝐺 Σ 𝑤 ∈ ( ran 𝑃 ∖ { 0 } ) ( 𝑤 · ( ( 𝑤 − 𝑧 ) 𝐼 𝑧 ) ) ) |
| 271 | 192 | anasss | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐹 ) ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) ∈ ℂ ) |
| 272 | 12 10 271 | fsumcom | ⊢ ( 𝜑 → Σ 𝑧 ∈ ran 𝐺 Σ 𝑦 ∈ ran 𝐹 ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = Σ 𝑦 ∈ ran 𝐹 Σ 𝑧 ∈ ran 𝐺 ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) ) |
| 273 | 120 270 272 | 3eqtr2d | ⊢ ( 𝜑 → ( ∫1 ‘ ( 𝐹 ∘f + 𝐺 ) ) = Σ 𝑦 ∈ ran 𝐹 Σ 𝑧 ∈ ran 𝐺 ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) ) |