This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any preimage of a simple function is measurable. (Contributed by Mario Carneiro, 26-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | i1fima | |- ( F e. dom S.1 -> ( `' F " A ) e. dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1ff | |- ( F e. dom S.1 -> F : RR --> RR ) |
|
| 2 | ffun | |- ( F : RR --> RR -> Fun F ) |
|
| 3 | inpreima | |- ( Fun F -> ( `' F " ( A i^i ran F ) ) = ( ( `' F " A ) i^i ( `' F " ran F ) ) ) |
|
| 4 | iunid | |- U_ y e. ( A i^i ran F ) { y } = ( A i^i ran F ) |
|
| 5 | 4 | imaeq2i | |- ( `' F " U_ y e. ( A i^i ran F ) { y } ) = ( `' F " ( A i^i ran F ) ) |
| 6 | imaiun | |- ( `' F " U_ y e. ( A i^i ran F ) { y } ) = U_ y e. ( A i^i ran F ) ( `' F " { y } ) |
|
| 7 | 5 6 | eqtr3i | |- ( `' F " ( A i^i ran F ) ) = U_ y e. ( A i^i ran F ) ( `' F " { y } ) |
| 8 | cnvimass | |- ( `' F " A ) C_ dom F |
|
| 9 | cnvimarndm | |- ( `' F " ran F ) = dom F |
|
| 10 | 8 9 | sseqtrri | |- ( `' F " A ) C_ ( `' F " ran F ) |
| 11 | dfss2 | |- ( ( `' F " A ) C_ ( `' F " ran F ) <-> ( ( `' F " A ) i^i ( `' F " ran F ) ) = ( `' F " A ) ) |
|
| 12 | 10 11 | mpbi | |- ( ( `' F " A ) i^i ( `' F " ran F ) ) = ( `' F " A ) |
| 13 | 3 7 12 | 3eqtr3g | |- ( Fun F -> U_ y e. ( A i^i ran F ) ( `' F " { y } ) = ( `' F " A ) ) |
| 14 | 1 2 13 | 3syl | |- ( F e. dom S.1 -> U_ y e. ( A i^i ran F ) ( `' F " { y } ) = ( `' F " A ) ) |
| 15 | i1frn | |- ( F e. dom S.1 -> ran F e. Fin ) |
|
| 16 | inss2 | |- ( A i^i ran F ) C_ ran F |
|
| 17 | ssfi | |- ( ( ran F e. Fin /\ ( A i^i ran F ) C_ ran F ) -> ( A i^i ran F ) e. Fin ) |
|
| 18 | 15 16 17 | sylancl | |- ( F e. dom S.1 -> ( A i^i ran F ) e. Fin ) |
| 19 | i1fmbf | |- ( F e. dom S.1 -> F e. MblFn ) |
|
| 20 | 19 | adantr | |- ( ( F e. dom S.1 /\ y e. ( A i^i ran F ) ) -> F e. MblFn ) |
| 21 | 1 | adantr | |- ( ( F e. dom S.1 /\ y e. ( A i^i ran F ) ) -> F : RR --> RR ) |
| 22 | 1 | frnd | |- ( F e. dom S.1 -> ran F C_ RR ) |
| 23 | 16 22 | sstrid | |- ( F e. dom S.1 -> ( A i^i ran F ) C_ RR ) |
| 24 | 23 | sselda | |- ( ( F e. dom S.1 /\ y e. ( A i^i ran F ) ) -> y e. RR ) |
| 25 | mbfimasn | |- ( ( F e. MblFn /\ F : RR --> RR /\ y e. RR ) -> ( `' F " { y } ) e. dom vol ) |
|
| 26 | 20 21 24 25 | syl3anc | |- ( ( F e. dom S.1 /\ y e. ( A i^i ran F ) ) -> ( `' F " { y } ) e. dom vol ) |
| 27 | 26 | ralrimiva | |- ( F e. dom S.1 -> A. y e. ( A i^i ran F ) ( `' F " { y } ) e. dom vol ) |
| 28 | finiunmbl | |- ( ( ( A i^i ran F ) e. Fin /\ A. y e. ( A i^i ran F ) ( `' F " { y } ) e. dom vol ) -> U_ y e. ( A i^i ran F ) ( `' F " { y } ) e. dom vol ) |
|
| 29 | 18 27 28 | syl2anc | |- ( F e. dom S.1 -> U_ y e. ( A i^i ran F ) ( `' F " { y } ) e. dom vol ) |
| 30 | 14 29 | eqeltrrd | |- ( F e. dom S.1 -> ( `' F " A ) e. dom vol ) |