This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Decompose a preimage, which is always a disjoint union. (Contributed by Mario Carneiro, 25-Jun-2014) (Proof shortened by Mario Carneiro, 11-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg1addlem.1 | |- ( ph -> F : X --> Y ) |
|
| itg1addlem.2 | |- ( ph -> A e. Fin ) |
||
| itg1addlem.3 | |- ( ( ph /\ k e. A ) -> B C_ ( `' F " { k } ) ) |
||
| itg1addlem.4 | |- ( ( ph /\ k e. A ) -> B e. dom vol ) |
||
| itg1addlem.5 | |- ( ( ph /\ k e. A ) -> ( vol ` B ) e. RR ) |
||
| Assertion | itg1addlem1 | |- ( ph -> ( vol ` U_ k e. A B ) = sum_ k e. A ( vol ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg1addlem.1 | |- ( ph -> F : X --> Y ) |
|
| 2 | itg1addlem.2 | |- ( ph -> A e. Fin ) |
|
| 3 | itg1addlem.3 | |- ( ( ph /\ k e. A ) -> B C_ ( `' F " { k } ) ) |
|
| 4 | itg1addlem.4 | |- ( ( ph /\ k e. A ) -> B e. dom vol ) |
|
| 5 | itg1addlem.5 | |- ( ( ph /\ k e. A ) -> ( vol ` B ) e. RR ) |
|
| 6 | 4 5 | jca | |- ( ( ph /\ k e. A ) -> ( B e. dom vol /\ ( vol ` B ) e. RR ) ) |
| 7 | 6 | ralrimiva | |- ( ph -> A. k e. A ( B e. dom vol /\ ( vol ` B ) e. RR ) ) |
| 8 | 3 | adantrr | |- ( ( ph /\ ( k e. A /\ x e. B ) ) -> B C_ ( `' F " { k } ) ) |
| 9 | simprr | |- ( ( ph /\ ( k e. A /\ x e. B ) ) -> x e. B ) |
|
| 10 | 8 9 | sseldd | |- ( ( ph /\ ( k e. A /\ x e. B ) ) -> x e. ( `' F " { k } ) ) |
| 11 | 1 | ffnd | |- ( ph -> F Fn X ) |
| 12 | 11 | adantr | |- ( ( ph /\ ( k e. A /\ x e. B ) ) -> F Fn X ) |
| 13 | fniniseg | |- ( F Fn X -> ( x e. ( `' F " { k } ) <-> ( x e. X /\ ( F ` x ) = k ) ) ) |
|
| 14 | 12 13 | syl | |- ( ( ph /\ ( k e. A /\ x e. B ) ) -> ( x e. ( `' F " { k } ) <-> ( x e. X /\ ( F ` x ) = k ) ) ) |
| 15 | 10 14 | mpbid | |- ( ( ph /\ ( k e. A /\ x e. B ) ) -> ( x e. X /\ ( F ` x ) = k ) ) |
| 16 | 15 | simprd | |- ( ( ph /\ ( k e. A /\ x e. B ) ) -> ( F ` x ) = k ) |
| 17 | 16 | ralrimivva | |- ( ph -> A. k e. A A. x e. B ( F ` x ) = k ) |
| 18 | invdisj | |- ( A. k e. A A. x e. B ( F ` x ) = k -> Disj_ k e. A B ) |
|
| 19 | 17 18 | syl | |- ( ph -> Disj_ k e. A B ) |
| 20 | volfiniun | |- ( ( A e. Fin /\ A. k e. A ( B e. dom vol /\ ( vol ` B ) e. RR ) /\ Disj_ k e. A B ) -> ( vol ` U_ k e. A B ) = sum_ k e. A ( vol ` B ) ) |
|
| 21 | 2 7 19 20 | syl3anc | |- ( ph -> ( vol ` U_ k e. A B ) = sum_ k e. A ( vol ` B ) ) |