This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Decompose the preimage of a sum. (Contributed by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | i1fadd.1 | |- ( ph -> F e. dom S.1 ) |
|
| i1fadd.2 | |- ( ph -> G e. dom S.1 ) |
||
| Assertion | i1faddlem | |- ( ( ph /\ A e. CC ) -> ( `' ( F oF + G ) " { A } ) = U_ y e. ran G ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fadd.1 | |- ( ph -> F e. dom S.1 ) |
|
| 2 | i1fadd.2 | |- ( ph -> G e. dom S.1 ) |
|
| 3 | i1ff | |- ( F e. dom S.1 -> F : RR --> RR ) |
|
| 4 | 1 3 | syl | |- ( ph -> F : RR --> RR ) |
| 5 | 4 | ffnd | |- ( ph -> F Fn RR ) |
| 6 | i1ff | |- ( G e. dom S.1 -> G : RR --> RR ) |
|
| 7 | 2 6 | syl | |- ( ph -> G : RR --> RR ) |
| 8 | 7 | ffnd | |- ( ph -> G Fn RR ) |
| 9 | reex | |- RR e. _V |
|
| 10 | 9 | a1i | |- ( ph -> RR e. _V ) |
| 11 | inidm | |- ( RR i^i RR ) = RR |
|
| 12 | 5 8 10 10 11 | offn | |- ( ph -> ( F oF + G ) Fn RR ) |
| 13 | 12 | adantr | |- ( ( ph /\ A e. CC ) -> ( F oF + G ) Fn RR ) |
| 14 | fniniseg | |- ( ( F oF + G ) Fn RR -> ( z e. ( `' ( F oF + G ) " { A } ) <-> ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) ) |
|
| 15 | 13 14 | syl | |- ( ( ph /\ A e. CC ) -> ( z e. ( `' ( F oF + G ) " { A } ) <-> ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) ) |
| 16 | 8 | ad2antrr | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> G Fn RR ) |
| 17 | simprl | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> z e. RR ) |
|
| 18 | fnfvelrn | |- ( ( G Fn RR /\ z e. RR ) -> ( G ` z ) e. ran G ) |
|
| 19 | 16 17 18 | syl2anc | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( G ` z ) e. ran G ) |
| 20 | simprr | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( ( F oF + G ) ` z ) = A ) |
|
| 21 | eqidd | |- ( ( ph /\ z e. RR ) -> ( F ` z ) = ( F ` z ) ) |
|
| 22 | eqidd | |- ( ( ph /\ z e. RR ) -> ( G ` z ) = ( G ` z ) ) |
|
| 23 | 5 8 10 10 11 21 22 | ofval | |- ( ( ph /\ z e. RR ) -> ( ( F oF + G ) ` z ) = ( ( F ` z ) + ( G ` z ) ) ) |
| 24 | 23 | ad2ant2r | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( ( F oF + G ) ` z ) = ( ( F ` z ) + ( G ` z ) ) ) |
| 25 | 20 24 | eqtr3d | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> A = ( ( F ` z ) + ( G ` z ) ) ) |
| 26 | 25 | oveq1d | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( A - ( G ` z ) ) = ( ( ( F ` z ) + ( G ` z ) ) - ( G ` z ) ) ) |
| 27 | ax-resscn | |- RR C_ CC |
|
| 28 | fss | |- ( ( F : RR --> RR /\ RR C_ CC ) -> F : RR --> CC ) |
|
| 29 | 4 27 28 | sylancl | |- ( ph -> F : RR --> CC ) |
| 30 | 29 | ad2antrr | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> F : RR --> CC ) |
| 31 | 30 17 | ffvelcdmd | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( F ` z ) e. CC ) |
| 32 | fss | |- ( ( G : RR --> RR /\ RR C_ CC ) -> G : RR --> CC ) |
|
| 33 | 7 27 32 | sylancl | |- ( ph -> G : RR --> CC ) |
| 34 | 33 | ad2antrr | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> G : RR --> CC ) |
| 35 | 34 17 | ffvelcdmd | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( G ` z ) e. CC ) |
| 36 | 31 35 | pncand | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( ( ( F ` z ) + ( G ` z ) ) - ( G ` z ) ) = ( F ` z ) ) |
| 37 | 26 36 | eqtr2d | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( F ` z ) = ( A - ( G ` z ) ) ) |
| 38 | 5 | ad2antrr | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> F Fn RR ) |
| 39 | fniniseg | |- ( F Fn RR -> ( z e. ( `' F " { ( A - ( G ` z ) ) } ) <-> ( z e. RR /\ ( F ` z ) = ( A - ( G ` z ) ) ) ) ) |
|
| 40 | 38 39 | syl | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( z e. ( `' F " { ( A - ( G ` z ) ) } ) <-> ( z e. RR /\ ( F ` z ) = ( A - ( G ` z ) ) ) ) ) |
| 41 | 17 37 40 | mpbir2and | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> z e. ( `' F " { ( A - ( G ` z ) ) } ) ) |
| 42 | eqidd | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( G ` z ) = ( G ` z ) ) |
|
| 43 | fniniseg | |- ( G Fn RR -> ( z e. ( `' G " { ( G ` z ) } ) <-> ( z e. RR /\ ( G ` z ) = ( G ` z ) ) ) ) |
|
| 44 | 16 43 | syl | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( z e. ( `' G " { ( G ` z ) } ) <-> ( z e. RR /\ ( G ` z ) = ( G ` z ) ) ) ) |
| 45 | 17 42 44 | mpbir2and | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> z e. ( `' G " { ( G ` z ) } ) ) |
| 46 | 41 45 | elind | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> z e. ( ( `' F " { ( A - ( G ` z ) ) } ) i^i ( `' G " { ( G ` z ) } ) ) ) |
| 47 | oveq2 | |- ( y = ( G ` z ) -> ( A - y ) = ( A - ( G ` z ) ) ) |
|
| 48 | 47 | sneqd | |- ( y = ( G ` z ) -> { ( A - y ) } = { ( A - ( G ` z ) ) } ) |
| 49 | 48 | imaeq2d | |- ( y = ( G ` z ) -> ( `' F " { ( A - y ) } ) = ( `' F " { ( A - ( G ` z ) ) } ) ) |
| 50 | sneq | |- ( y = ( G ` z ) -> { y } = { ( G ` z ) } ) |
|
| 51 | 50 | imaeq2d | |- ( y = ( G ` z ) -> ( `' G " { y } ) = ( `' G " { ( G ` z ) } ) ) |
| 52 | 49 51 | ineq12d | |- ( y = ( G ` z ) -> ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) = ( ( `' F " { ( A - ( G ` z ) ) } ) i^i ( `' G " { ( G ` z ) } ) ) ) |
| 53 | 52 | eleq2d | |- ( y = ( G ` z ) -> ( z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) <-> z e. ( ( `' F " { ( A - ( G ` z ) ) } ) i^i ( `' G " { ( G ` z ) } ) ) ) ) |
| 54 | 53 | rspcev | |- ( ( ( G ` z ) e. ran G /\ z e. ( ( `' F " { ( A - ( G ` z ) ) } ) i^i ( `' G " { ( G ` z ) } ) ) ) -> E. y e. ran G z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) ) |
| 55 | 19 46 54 | syl2anc | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> E. y e. ran G z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) ) |
| 56 | 55 | ex | |- ( ( ph /\ A e. CC ) -> ( ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) -> E. y e. ran G z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) ) ) |
| 57 | elin | |- ( z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) <-> ( z e. ( `' F " { ( A - y ) } ) /\ z e. ( `' G " { y } ) ) ) |
|
| 58 | 5 | adantr | |- ( ( ph /\ A e. CC ) -> F Fn RR ) |
| 59 | fniniseg | |- ( F Fn RR -> ( z e. ( `' F " { ( A - y ) } ) <-> ( z e. RR /\ ( F ` z ) = ( A - y ) ) ) ) |
|
| 60 | 58 59 | syl | |- ( ( ph /\ A e. CC ) -> ( z e. ( `' F " { ( A - y ) } ) <-> ( z e. RR /\ ( F ` z ) = ( A - y ) ) ) ) |
| 61 | 8 | adantr | |- ( ( ph /\ A e. CC ) -> G Fn RR ) |
| 62 | fniniseg | |- ( G Fn RR -> ( z e. ( `' G " { y } ) <-> ( z e. RR /\ ( G ` z ) = y ) ) ) |
|
| 63 | 61 62 | syl | |- ( ( ph /\ A e. CC ) -> ( z e. ( `' G " { y } ) <-> ( z e. RR /\ ( G ` z ) = y ) ) ) |
| 64 | 60 63 | anbi12d | |- ( ( ph /\ A e. CC ) -> ( ( z e. ( `' F " { ( A - y ) } ) /\ z e. ( `' G " { y } ) ) <-> ( ( z e. RR /\ ( F ` z ) = ( A - y ) ) /\ ( z e. RR /\ ( G ` z ) = y ) ) ) ) |
| 65 | anandi | |- ( ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) <-> ( ( z e. RR /\ ( F ` z ) = ( A - y ) ) /\ ( z e. RR /\ ( G ` z ) = y ) ) ) |
|
| 66 | simprl | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> z e. RR ) |
|
| 67 | 23 | ad2ant2r | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> ( ( F oF + G ) ` z ) = ( ( F ` z ) + ( G ` z ) ) ) |
| 68 | simprrl | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> ( F ` z ) = ( A - y ) ) |
|
| 69 | simprrr | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> ( G ` z ) = y ) |
|
| 70 | 68 69 | oveq12d | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> ( ( F ` z ) + ( G ` z ) ) = ( ( A - y ) + y ) ) |
| 71 | simplr | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> A e. CC ) |
|
| 72 | 33 | ad2antrr | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> G : RR --> CC ) |
| 73 | 72 66 | ffvelcdmd | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> ( G ` z ) e. CC ) |
| 74 | 69 73 | eqeltrrd | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> y e. CC ) |
| 75 | 71 74 | npcand | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> ( ( A - y ) + y ) = A ) |
| 76 | 67 70 75 | 3eqtrd | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> ( ( F oF + G ) ` z ) = A ) |
| 77 | 66 76 | jca | |- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) |
| 78 | 77 | ex | |- ( ( ph /\ A e. CC ) -> ( ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) -> ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) ) |
| 79 | 65 78 | biimtrrid | |- ( ( ph /\ A e. CC ) -> ( ( ( z e. RR /\ ( F ` z ) = ( A - y ) ) /\ ( z e. RR /\ ( G ` z ) = y ) ) -> ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) ) |
| 80 | 64 79 | sylbid | |- ( ( ph /\ A e. CC ) -> ( ( z e. ( `' F " { ( A - y ) } ) /\ z e. ( `' G " { y } ) ) -> ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) ) |
| 81 | 57 80 | biimtrid | |- ( ( ph /\ A e. CC ) -> ( z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) -> ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) ) |
| 82 | 81 | rexlimdvw | |- ( ( ph /\ A e. CC ) -> ( E. y e. ran G z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) -> ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) ) |
| 83 | 56 82 | impbid | |- ( ( ph /\ A e. CC ) -> ( ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) <-> E. y e. ran G z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) ) ) |
| 84 | 15 83 | bitrd | |- ( ( ph /\ A e. CC ) -> ( z e. ( `' ( F oF + G ) " { A } ) <-> E. y e. ran G z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) ) ) |
| 85 | eliun | |- ( z e. U_ y e. ran G ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) <-> E. y e. ran G z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) ) |
|
| 86 | 84 85 | bitr4di | |- ( ( ph /\ A e. CC ) -> ( z e. ( `' ( F oF + G ) " { A } ) <-> z e. U_ y e. ran G ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) ) ) |
| 87 | 86 | eqrdv | |- ( ( ph /\ A e. CC ) -> ( `' ( F oF + G ) " { A } ) = U_ y e. ran G ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) ) |