This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg1val2 | |- ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) -> ( S.1 ` F ) = sum_ x e. A ( x x. ( vol ` ( `' F " { x } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg1val | |- ( F e. dom S.1 -> ( S.1 ` F ) = sum_ x e. ( ran F \ { 0 } ) ( x x. ( vol ` ( `' F " { x } ) ) ) ) |
|
| 2 | 1 | adantr | |- ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) -> ( S.1 ` F ) = sum_ x e. ( ran F \ { 0 } ) ( x x. ( vol ` ( `' F " { x } ) ) ) ) |
| 3 | simpr2 | |- ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) -> ( ran F \ { 0 } ) C_ A ) |
|
| 4 | 3 | sselda | |- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( ran F \ { 0 } ) ) -> x e. A ) |
| 5 | simpr3 | |- ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) -> A C_ ( RR \ { 0 } ) ) |
|
| 6 | 5 | sselda | |- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. A ) -> x e. ( RR \ { 0 } ) ) |
| 7 | eldifi | |- ( x e. ( RR \ { 0 } ) -> x e. RR ) |
|
| 8 | 6 7 | syl | |- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. A ) -> x e. RR ) |
| 9 | i1fima2sn | |- ( ( F e. dom S.1 /\ x e. ( RR \ { 0 } ) ) -> ( vol ` ( `' F " { x } ) ) e. RR ) |
|
| 10 | 9 | adantlr | |- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( RR \ { 0 } ) ) -> ( vol ` ( `' F " { x } ) ) e. RR ) |
| 11 | 6 10 | syldan | |- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. A ) -> ( vol ` ( `' F " { x } ) ) e. RR ) |
| 12 | 8 11 | remulcld | |- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. A ) -> ( x x. ( vol ` ( `' F " { x } ) ) ) e. RR ) |
| 13 | 12 | recnd | |- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. A ) -> ( x x. ( vol ` ( `' F " { x } ) ) ) e. CC ) |
| 14 | 4 13 | syldan | |- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( ran F \ { 0 } ) ) -> ( x x. ( vol ` ( `' F " { x } ) ) ) e. CC ) |
| 15 | i1ff | |- ( F e. dom S.1 -> F : RR --> RR ) |
|
| 16 | 15 | ad2antrr | |- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> F : RR --> RR ) |
| 17 | ffrn | |- ( F : RR --> RR -> F : RR --> ran F ) |
|
| 18 | 16 17 | syl | |- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> F : RR --> ran F ) |
| 19 | eldifn | |- ( x e. ( A \ ( ran F \ { 0 } ) ) -> -. x e. ( ran F \ { 0 } ) ) |
|
| 20 | 19 | adantl | |- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> -. x e. ( ran F \ { 0 } ) ) |
| 21 | eldif | |- ( x e. ( ran F \ { 0 } ) <-> ( x e. ran F /\ -. x e. { 0 } ) ) |
|
| 22 | simplr3 | |- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> A C_ ( RR \ { 0 } ) ) |
|
| 23 | 22 | ssdifssd | |- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> ( A \ ( ran F \ { 0 } ) ) C_ ( RR \ { 0 } ) ) |
| 24 | simpr | |- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> x e. ( A \ ( ran F \ { 0 } ) ) ) |
|
| 25 | 23 24 | sseldd | |- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> x e. ( RR \ { 0 } ) ) |
| 26 | eldifn | |- ( x e. ( RR \ { 0 } ) -> -. x e. { 0 } ) |
|
| 27 | 25 26 | syl | |- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> -. x e. { 0 } ) |
| 28 | 27 | biantrud | |- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> ( x e. ran F <-> ( x e. ran F /\ -. x e. { 0 } ) ) ) |
| 29 | 21 28 | bitr4id | |- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> ( x e. ( ran F \ { 0 } ) <-> x e. ran F ) ) |
| 30 | 20 29 | mtbid | |- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> -. x e. ran F ) |
| 31 | disjsn | |- ( ( ran F i^i { x } ) = (/) <-> -. x e. ran F ) |
|
| 32 | 30 31 | sylibr | |- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> ( ran F i^i { x } ) = (/) ) |
| 33 | fimacnvdisj | |- ( ( F : RR --> ran F /\ ( ran F i^i { x } ) = (/) ) -> ( `' F " { x } ) = (/) ) |
|
| 34 | 18 32 33 | syl2anc | |- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> ( `' F " { x } ) = (/) ) |
| 35 | 34 | fveq2d | |- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> ( vol ` ( `' F " { x } ) ) = ( vol ` (/) ) ) |
| 36 | 0mbl | |- (/) e. dom vol |
|
| 37 | mblvol | |- ( (/) e. dom vol -> ( vol ` (/) ) = ( vol* ` (/) ) ) |
|
| 38 | 36 37 | ax-mp | |- ( vol ` (/) ) = ( vol* ` (/) ) |
| 39 | ovol0 | |- ( vol* ` (/) ) = 0 |
|
| 40 | 38 39 | eqtri | |- ( vol ` (/) ) = 0 |
| 41 | 35 40 | eqtrdi | |- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> ( vol ` ( `' F " { x } ) ) = 0 ) |
| 42 | 41 | oveq2d | |- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> ( x x. ( vol ` ( `' F " { x } ) ) ) = ( x x. 0 ) ) |
| 43 | eldifi | |- ( x e. ( A \ ( ran F \ { 0 } ) ) -> x e. A ) |
|
| 44 | 43 8 | sylan2 | |- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> x e. RR ) |
| 45 | 44 | recnd | |- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> x e. CC ) |
| 46 | 45 | mul01d | |- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> ( x x. 0 ) = 0 ) |
| 47 | 42 46 | eqtrd | |- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> ( x x. ( vol ` ( `' F " { x } ) ) ) = 0 ) |
| 48 | simpr1 | |- ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) -> A e. Fin ) |
|
| 49 | 3 14 47 48 | fsumss | |- ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) -> sum_ x e. ( ran F \ { 0 } ) ( x x. ( vol ` ( `' F " { x } ) ) ) = sum_ x e. A ( x x. ( vol ` ( `' F " { x } ) ) ) ) |
| 50 | 2 49 | eqtrd | |- ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) -> ( S.1 ` F ) = sum_ x e. A ( x x. ( vol ` ( `' F " { x } ) ) ) ) |