This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017) (Proof shortened by Wolf Lammen, 23-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3eltr4g.1 | |- ( ph -> A e. B ) |
|
| 3eltr4g.2 | |- C = A |
||
| 3eltr4g.3 | |- D = B |
||
| Assertion | 3eltr4g | |- ( ph -> C e. D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eltr4g.1 | |- ( ph -> A e. B ) |
|
| 2 | 3eltr4g.2 | |- C = A |
|
| 3 | 3eltr4g.3 | |- D = B |
|
| 4 | 2 1 | eqeltrid | |- ( ph -> C e. B ) |
| 5 | 4 3 | eleqtrrdi | |- ( ph -> C e. D ) |