This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 00id | |- ( 0 + 0 ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | |- 0 e. RR |
|
| 2 | ax-rnegex | |- ( 0 e. RR -> E. c e. RR ( 0 + c ) = 0 ) |
|
| 3 | oveq2 | |- ( c = 0 -> ( 0 + c ) = ( 0 + 0 ) ) |
|
| 4 | 3 | eqeq1d | |- ( c = 0 -> ( ( 0 + c ) = 0 <-> ( 0 + 0 ) = 0 ) ) |
| 5 | 4 | biimpd | |- ( c = 0 -> ( ( 0 + c ) = 0 -> ( 0 + 0 ) = 0 ) ) |
| 6 | 5 | adantld | |- ( c = 0 -> ( ( c e. RR /\ ( 0 + c ) = 0 ) -> ( 0 + 0 ) = 0 ) ) |
| 7 | ax-rrecex | |- ( ( c e. RR /\ c =/= 0 ) -> E. y e. RR ( c x. y ) = 1 ) |
|
| 8 | 7 | adantlr | |- ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) -> E. y e. RR ( c x. y ) = 1 ) |
| 9 | simplll | |- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> c e. RR ) |
|
| 10 | 9 | recnd | |- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> c e. CC ) |
| 11 | simprl | |- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> y e. RR ) |
|
| 12 | 11 | recnd | |- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> y e. CC ) |
| 13 | 0cn | |- 0 e. CC |
|
| 14 | mulass | |- ( ( c e. CC /\ y e. CC /\ 0 e. CC ) -> ( ( c x. y ) x. 0 ) = ( c x. ( y x. 0 ) ) ) |
|
| 15 | 13 14 | mp3an3 | |- ( ( c e. CC /\ y e. CC ) -> ( ( c x. y ) x. 0 ) = ( c x. ( y x. 0 ) ) ) |
| 16 | 10 12 15 | syl2anc | |- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( ( c x. y ) x. 0 ) = ( c x. ( y x. 0 ) ) ) |
| 17 | oveq1 | |- ( ( c x. y ) = 1 -> ( ( c x. y ) x. 0 ) = ( 1 x. 0 ) ) |
|
| 18 | 13 | mullidi | |- ( 1 x. 0 ) = 0 |
| 19 | 17 18 | eqtrdi | |- ( ( c x. y ) = 1 -> ( ( c x. y ) x. 0 ) = 0 ) |
| 20 | 19 | ad2antll | |- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( ( c x. y ) x. 0 ) = 0 ) |
| 21 | 16 20 | eqtr3d | |- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( c x. ( y x. 0 ) ) = 0 ) |
| 22 | 21 | oveq1d | |- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( ( c x. ( y x. 0 ) ) + 0 ) = ( 0 + 0 ) ) |
| 23 | simpllr | |- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( 0 + c ) = 0 ) |
|
| 24 | 23 | oveq1d | |- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( ( 0 + c ) x. ( y x. 0 ) ) = ( 0 x. ( y x. 0 ) ) ) |
| 25 | remulcl | |- ( ( y e. RR /\ 0 e. RR ) -> ( y x. 0 ) e. RR ) |
|
| 26 | 1 25 | mpan2 | |- ( y e. RR -> ( y x. 0 ) e. RR ) |
| 27 | 26 | ad2antrl | |- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( y x. 0 ) e. RR ) |
| 28 | 27 | recnd | |- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( y x. 0 ) e. CC ) |
| 29 | adddir | |- ( ( 0 e. CC /\ c e. CC /\ ( y x. 0 ) e. CC ) -> ( ( 0 + c ) x. ( y x. 0 ) ) = ( ( 0 x. ( y x. 0 ) ) + ( c x. ( y x. 0 ) ) ) ) |
|
| 30 | 13 10 28 29 | mp3an2i | |- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( ( 0 + c ) x. ( y x. 0 ) ) = ( ( 0 x. ( y x. 0 ) ) + ( c x. ( y x. 0 ) ) ) ) |
| 31 | 24 30 | eqtr3d | |- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( 0 x. ( y x. 0 ) ) = ( ( 0 x. ( y x. 0 ) ) + ( c x. ( y x. 0 ) ) ) ) |
| 32 | 31 | oveq1d | |- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( ( 0 x. ( y x. 0 ) ) + 0 ) = ( ( ( 0 x. ( y x. 0 ) ) + ( c x. ( y x. 0 ) ) ) + 0 ) ) |
| 33 | remulcl | |- ( ( 0 e. RR /\ ( y x. 0 ) e. RR ) -> ( 0 x. ( y x. 0 ) ) e. RR ) |
|
| 34 | 1 26 33 | sylancr | |- ( y e. RR -> ( 0 x. ( y x. 0 ) ) e. RR ) |
| 35 | 34 | ad2antrl | |- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( 0 x. ( y x. 0 ) ) e. RR ) |
| 36 | 35 | recnd | |- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( 0 x. ( y x. 0 ) ) e. CC ) |
| 37 | remulcl | |- ( ( c e. RR /\ ( y x. 0 ) e. RR ) -> ( c x. ( y x. 0 ) ) e. RR ) |
|
| 38 | 9 27 37 | syl2anc | |- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( c x. ( y x. 0 ) ) e. RR ) |
| 39 | 38 | recnd | |- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( c x. ( y x. 0 ) ) e. CC ) |
| 40 | addass | |- ( ( ( 0 x. ( y x. 0 ) ) e. CC /\ ( c x. ( y x. 0 ) ) e. CC /\ 0 e. CC ) -> ( ( ( 0 x. ( y x. 0 ) ) + ( c x. ( y x. 0 ) ) ) + 0 ) = ( ( 0 x. ( y x. 0 ) ) + ( ( c x. ( y x. 0 ) ) + 0 ) ) ) |
|
| 41 | 13 40 | mp3an3 | |- ( ( ( 0 x. ( y x. 0 ) ) e. CC /\ ( c x. ( y x. 0 ) ) e. CC ) -> ( ( ( 0 x. ( y x. 0 ) ) + ( c x. ( y x. 0 ) ) ) + 0 ) = ( ( 0 x. ( y x. 0 ) ) + ( ( c x. ( y x. 0 ) ) + 0 ) ) ) |
| 42 | 36 39 41 | syl2anc | |- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( ( ( 0 x. ( y x. 0 ) ) + ( c x. ( y x. 0 ) ) ) + 0 ) = ( ( 0 x. ( y x. 0 ) ) + ( ( c x. ( y x. 0 ) ) + 0 ) ) ) |
| 43 | 32 42 | eqtr2d | |- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( ( 0 x. ( y x. 0 ) ) + ( ( c x. ( y x. 0 ) ) + 0 ) ) = ( ( 0 x. ( y x. 0 ) ) + 0 ) ) |
| 44 | 26 37 | sylan2 | |- ( ( c e. RR /\ y e. RR ) -> ( c x. ( y x. 0 ) ) e. RR ) |
| 45 | readdcl | |- ( ( ( c x. ( y x. 0 ) ) e. RR /\ 0 e. RR ) -> ( ( c x. ( y x. 0 ) ) + 0 ) e. RR ) |
|
| 46 | 44 1 45 | sylancl | |- ( ( c e. RR /\ y e. RR ) -> ( ( c x. ( y x. 0 ) ) + 0 ) e. RR ) |
| 47 | 9 11 46 | syl2anc | |- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( ( c x. ( y x. 0 ) ) + 0 ) e. RR ) |
| 48 | readdcan | |- ( ( ( ( c x. ( y x. 0 ) ) + 0 ) e. RR /\ 0 e. RR /\ ( 0 x. ( y x. 0 ) ) e. RR ) -> ( ( ( 0 x. ( y x. 0 ) ) + ( ( c x. ( y x. 0 ) ) + 0 ) ) = ( ( 0 x. ( y x. 0 ) ) + 0 ) <-> ( ( c x. ( y x. 0 ) ) + 0 ) = 0 ) ) |
|
| 49 | 1 48 | mp3an2 | |- ( ( ( ( c x. ( y x. 0 ) ) + 0 ) e. RR /\ ( 0 x. ( y x. 0 ) ) e. RR ) -> ( ( ( 0 x. ( y x. 0 ) ) + ( ( c x. ( y x. 0 ) ) + 0 ) ) = ( ( 0 x. ( y x. 0 ) ) + 0 ) <-> ( ( c x. ( y x. 0 ) ) + 0 ) = 0 ) ) |
| 50 | 47 35 49 | syl2anc | |- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( ( ( 0 x. ( y x. 0 ) ) + ( ( c x. ( y x. 0 ) ) + 0 ) ) = ( ( 0 x. ( y x. 0 ) ) + 0 ) <-> ( ( c x. ( y x. 0 ) ) + 0 ) = 0 ) ) |
| 51 | 43 50 | mpbid | |- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( ( c x. ( y x. 0 ) ) + 0 ) = 0 ) |
| 52 | 22 51 | eqtr3d | |- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( 0 + 0 ) = 0 ) |
| 53 | 8 52 | rexlimddv | |- ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) -> ( 0 + 0 ) = 0 ) |
| 54 | 53 | expcom | |- ( c =/= 0 -> ( ( c e. RR /\ ( 0 + c ) = 0 ) -> ( 0 + 0 ) = 0 ) ) |
| 55 | 6 54 | pm2.61ine | |- ( ( c e. RR /\ ( 0 + c ) = 0 ) -> ( 0 + 0 ) = 0 ) |
| 56 | 55 | rexlimiva | |- ( E. c e. RR ( 0 + c ) = 0 -> ( 0 + 0 ) = 0 ) |
| 57 | 1 2 56 | mp2b | |- ( 0 + 0 ) = 0 |