This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for itg1add . (Contributed by Mario Carneiro, 27-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | i1fadd.1 | |- ( ph -> F e. dom S.1 ) |
|
| i1fadd.2 | |- ( ph -> G e. dom S.1 ) |
||
| itg1add.3 | |- I = ( i e. RR , j e. RR |-> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) ) |
||
| itg1add.4 | |- P = ( + |` ( ran F X. ran G ) ) |
||
| Assertion | itg1addlem5 | |- ( ph -> ( S.1 ` ( F oF + G ) ) = ( ( S.1 ` F ) + ( S.1 ` G ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fadd.1 | |- ( ph -> F e. dom S.1 ) |
|
| 2 | i1fadd.2 | |- ( ph -> G e. dom S.1 ) |
|
| 3 | itg1add.3 | |- I = ( i e. RR , j e. RR |-> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) ) |
|
| 4 | itg1add.4 | |- P = ( + |` ( ran F X. ran G ) ) |
|
| 5 | i1frn | |- ( F e. dom S.1 -> ran F e. Fin ) |
|
| 6 | 1 5 | syl | |- ( ph -> ran F e. Fin ) |
| 7 | i1frn | |- ( G e. dom S.1 -> ran G e. Fin ) |
|
| 8 | 2 7 | syl | |- ( ph -> ran G e. Fin ) |
| 9 | 8 | adantr | |- ( ( ph /\ y e. ran F ) -> ran G e. Fin ) |
| 10 | i1ff | |- ( F e. dom S.1 -> F : RR --> RR ) |
|
| 11 | 1 10 | syl | |- ( ph -> F : RR --> RR ) |
| 12 | 11 | frnd | |- ( ph -> ran F C_ RR ) |
| 13 | 12 | sselda | |- ( ( ph /\ y e. ran F ) -> y e. RR ) |
| 14 | 13 | adantr | |- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> y e. RR ) |
| 15 | 14 | recnd | |- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> y e. CC ) |
| 16 | 1 2 3 | itg1addlem2 | |- ( ph -> I : ( RR X. RR ) --> RR ) |
| 17 | 16 | ad2antrr | |- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> I : ( RR X. RR ) --> RR ) |
| 18 | i1ff | |- ( G e. dom S.1 -> G : RR --> RR ) |
|
| 19 | 2 18 | syl | |- ( ph -> G : RR --> RR ) |
| 20 | 19 | frnd | |- ( ph -> ran G C_ RR ) |
| 21 | 20 | sselda | |- ( ( ph /\ z e. ran G ) -> z e. RR ) |
| 22 | 21 | adantlr | |- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> z e. RR ) |
| 23 | 17 14 22 | fovcdmd | |- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> ( y I z ) e. RR ) |
| 24 | 23 | recnd | |- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> ( y I z ) e. CC ) |
| 25 | 15 24 | mulcld | |- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> ( y x. ( y I z ) ) e. CC ) |
| 26 | 9 25 | fsumcl | |- ( ( ph /\ y e. ran F ) -> sum_ z e. ran G ( y x. ( y I z ) ) e. CC ) |
| 27 | 22 | recnd | |- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> z e. CC ) |
| 28 | 27 24 | mulcld | |- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> ( z x. ( y I z ) ) e. CC ) |
| 29 | 9 28 | fsumcl | |- ( ( ph /\ y e. ran F ) -> sum_ z e. ran G ( z x. ( y I z ) ) e. CC ) |
| 30 | 6 26 29 | fsumadd | |- ( ph -> sum_ y e. ran F ( sum_ z e. ran G ( y x. ( y I z ) ) + sum_ z e. ran G ( z x. ( y I z ) ) ) = ( sum_ y e. ran F sum_ z e. ran G ( y x. ( y I z ) ) + sum_ y e. ran F sum_ z e. ran G ( z x. ( y I z ) ) ) ) |
| 31 | 1 2 3 4 | itg1addlem4 | |- ( ph -> ( S.1 ` ( F oF + G ) ) = sum_ y e. ran F sum_ z e. ran G ( ( y + z ) x. ( y I z ) ) ) |
| 32 | 15 27 24 | adddird | |- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> ( ( y + z ) x. ( y I z ) ) = ( ( y x. ( y I z ) ) + ( z x. ( y I z ) ) ) ) |
| 33 | 32 | sumeq2dv | |- ( ( ph /\ y e. ran F ) -> sum_ z e. ran G ( ( y + z ) x. ( y I z ) ) = sum_ z e. ran G ( ( y x. ( y I z ) ) + ( z x. ( y I z ) ) ) ) |
| 34 | 9 25 28 | fsumadd | |- ( ( ph /\ y e. ran F ) -> sum_ z e. ran G ( ( y x. ( y I z ) ) + ( z x. ( y I z ) ) ) = ( sum_ z e. ran G ( y x. ( y I z ) ) + sum_ z e. ran G ( z x. ( y I z ) ) ) ) |
| 35 | 33 34 | eqtrd | |- ( ( ph /\ y e. ran F ) -> sum_ z e. ran G ( ( y + z ) x. ( y I z ) ) = ( sum_ z e. ran G ( y x. ( y I z ) ) + sum_ z e. ran G ( z x. ( y I z ) ) ) ) |
| 36 | 35 | sumeq2dv | |- ( ph -> sum_ y e. ran F sum_ z e. ran G ( ( y + z ) x. ( y I z ) ) = sum_ y e. ran F ( sum_ z e. ran G ( y x. ( y I z ) ) + sum_ z e. ran G ( z x. ( y I z ) ) ) ) |
| 37 | 31 36 | eqtrd | |- ( ph -> ( S.1 ` ( F oF + G ) ) = sum_ y e. ran F ( sum_ z e. ran G ( y x. ( y I z ) ) + sum_ z e. ran G ( z x. ( y I z ) ) ) ) |
| 38 | itg1val | |- ( F e. dom S.1 -> ( S.1 ` F ) = sum_ y e. ( ran F \ { 0 } ) ( y x. ( vol ` ( `' F " { y } ) ) ) ) |
|
| 39 | 1 38 | syl | |- ( ph -> ( S.1 ` F ) = sum_ y e. ( ran F \ { 0 } ) ( y x. ( vol ` ( `' F " { y } ) ) ) ) |
| 40 | 19 | adantr | |- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> G : RR --> RR ) |
| 41 | 8 | adantr | |- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ran G e. Fin ) |
| 42 | inss2 | |- ( ( `' F " { y } ) i^i ( `' G " { z } ) ) C_ ( `' G " { z } ) |
|
| 43 | 42 | a1i | |- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) C_ ( `' G " { z } ) ) |
| 44 | i1fima | |- ( F e. dom S.1 -> ( `' F " { y } ) e. dom vol ) |
|
| 45 | 1 44 | syl | |- ( ph -> ( `' F " { y } ) e. dom vol ) |
| 46 | 45 | ad2antrr | |- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( `' F " { y } ) e. dom vol ) |
| 47 | i1fima | |- ( G e. dom S.1 -> ( `' G " { z } ) e. dom vol ) |
|
| 48 | 2 47 | syl | |- ( ph -> ( `' G " { z } ) e. dom vol ) |
| 49 | 48 | ad2antrr | |- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( `' G " { z } ) e. dom vol ) |
| 50 | inmbl | |- ( ( ( `' F " { y } ) e. dom vol /\ ( `' G " { z } ) e. dom vol ) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) e. dom vol ) |
|
| 51 | 46 49 50 | syl2anc | |- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) e. dom vol ) |
| 52 | 12 | ssdifssd | |- ( ph -> ( ran F \ { 0 } ) C_ RR ) |
| 53 | 52 | sselda | |- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> y e. RR ) |
| 54 | 53 | adantr | |- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> y e. RR ) |
| 55 | 20 | adantr | |- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ran G C_ RR ) |
| 56 | 55 | sselda | |- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> z e. RR ) |
| 57 | eldifsni | |- ( y e. ( ran F \ { 0 } ) -> y =/= 0 ) |
|
| 58 | 57 | ad2antlr | |- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> y =/= 0 ) |
| 59 | simpl | |- ( ( y = 0 /\ z = 0 ) -> y = 0 ) |
|
| 60 | 59 | necon3ai | |- ( y =/= 0 -> -. ( y = 0 /\ z = 0 ) ) |
| 61 | 58 60 | syl | |- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> -. ( y = 0 /\ z = 0 ) ) |
| 62 | 1 2 3 | itg1addlem3 | |- ( ( ( y e. RR /\ z e. RR ) /\ -. ( y = 0 /\ z = 0 ) ) -> ( y I z ) = ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
| 63 | 54 56 61 62 | syl21anc | |- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( y I z ) = ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
| 64 | 16 | ad2antrr | |- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> I : ( RR X. RR ) --> RR ) |
| 65 | 64 54 56 | fovcdmd | |- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( y I z ) e. RR ) |
| 66 | 63 65 | eqeltrrd | |- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) e. RR ) |
| 67 | 40 41 43 51 66 | itg1addlem1 | |- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( vol ` U_ z e. ran G ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) = sum_ z e. ran G ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
| 68 | iunin2 | |- U_ z e. ran G ( ( `' F " { y } ) i^i ( `' G " { z } ) ) = ( ( `' F " { y } ) i^i U_ z e. ran G ( `' G " { z } ) ) |
|
| 69 | 1 | adantr | |- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> F e. dom S.1 ) |
| 70 | 69 44 | syl | |- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( `' F " { y } ) e. dom vol ) |
| 71 | mblss | |- ( ( `' F " { y } ) e. dom vol -> ( `' F " { y } ) C_ RR ) |
|
| 72 | 70 71 | syl | |- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( `' F " { y } ) C_ RR ) |
| 73 | iunid | |- U_ z e. ran G { z } = ran G |
|
| 74 | 73 | imaeq2i | |- ( `' G " U_ z e. ran G { z } ) = ( `' G " ran G ) |
| 75 | imaiun | |- ( `' G " U_ z e. ran G { z } ) = U_ z e. ran G ( `' G " { z } ) |
|
| 76 | cnvimarndm | |- ( `' G " ran G ) = dom G |
|
| 77 | 74 75 76 | 3eqtr3i | |- U_ z e. ran G ( `' G " { z } ) = dom G |
| 78 | 40 | fdmd | |- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> dom G = RR ) |
| 79 | 77 78 | eqtrid | |- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> U_ z e. ran G ( `' G " { z } ) = RR ) |
| 80 | 72 79 | sseqtrrd | |- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( `' F " { y } ) C_ U_ z e. ran G ( `' G " { z } ) ) |
| 81 | dfss2 | |- ( ( `' F " { y } ) C_ U_ z e. ran G ( `' G " { z } ) <-> ( ( `' F " { y } ) i^i U_ z e. ran G ( `' G " { z } ) ) = ( `' F " { y } ) ) |
|
| 82 | 80 81 | sylib | |- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( ( `' F " { y } ) i^i U_ z e. ran G ( `' G " { z } ) ) = ( `' F " { y } ) ) |
| 83 | 68 82 | eqtr2id | |- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( `' F " { y } ) = U_ z e. ran G ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) |
| 84 | 83 | fveq2d | |- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { y } ) ) = ( vol ` U_ z e. ran G ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
| 85 | 63 | sumeq2dv | |- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> sum_ z e. ran G ( y I z ) = sum_ z e. ran G ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
| 86 | 67 84 85 | 3eqtr4d | |- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { y } ) ) = sum_ z e. ran G ( y I z ) ) |
| 87 | 86 | oveq2d | |- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( y x. ( vol ` ( `' F " { y } ) ) ) = ( y x. sum_ z e. ran G ( y I z ) ) ) |
| 88 | 53 | recnd | |- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> y e. CC ) |
| 89 | 65 | recnd | |- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( y I z ) e. CC ) |
| 90 | 41 88 89 | fsummulc2 | |- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( y x. sum_ z e. ran G ( y I z ) ) = sum_ z e. ran G ( y x. ( y I z ) ) ) |
| 91 | 87 90 | eqtrd | |- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( y x. ( vol ` ( `' F " { y } ) ) ) = sum_ z e. ran G ( y x. ( y I z ) ) ) |
| 92 | 91 | sumeq2dv | |- ( ph -> sum_ y e. ( ran F \ { 0 } ) ( y x. ( vol ` ( `' F " { y } ) ) ) = sum_ y e. ( ran F \ { 0 } ) sum_ z e. ran G ( y x. ( y I z ) ) ) |
| 93 | difssd | |- ( ph -> ( ran F \ { 0 } ) C_ ran F ) |
|
| 94 | 54 | recnd | |- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> y e. CC ) |
| 95 | 94 89 | mulcld | |- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( y x. ( y I z ) ) e. CC ) |
| 96 | 41 95 | fsumcl | |- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> sum_ z e. ran G ( y x. ( y I z ) ) e. CC ) |
| 97 | dfin4 | |- ( ran F i^i { 0 } ) = ( ran F \ ( ran F \ { 0 } ) ) |
|
| 98 | inss2 | |- ( ran F i^i { 0 } ) C_ { 0 } |
|
| 99 | 97 98 | eqsstrri | |- ( ran F \ ( ran F \ { 0 } ) ) C_ { 0 } |
| 100 | 99 | sseli | |- ( y e. ( ran F \ ( ran F \ { 0 } ) ) -> y e. { 0 } ) |
| 101 | elsni | |- ( y e. { 0 } -> y = 0 ) |
|
| 102 | 101 | ad2antlr | |- ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> y = 0 ) |
| 103 | 102 | oveq1d | |- ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> ( y x. ( y I z ) ) = ( 0 x. ( y I z ) ) ) |
| 104 | 16 | ad2antrr | |- ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> I : ( RR X. RR ) --> RR ) |
| 105 | 0re | |- 0 e. RR |
|
| 106 | 102 105 | eqeltrdi | |- ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> y e. RR ) |
| 107 | 21 | adantlr | |- ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> z e. RR ) |
| 108 | 104 106 107 | fovcdmd | |- ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> ( y I z ) e. RR ) |
| 109 | 108 | recnd | |- ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> ( y I z ) e. CC ) |
| 110 | 109 | mul02d | |- ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> ( 0 x. ( y I z ) ) = 0 ) |
| 111 | 103 110 | eqtrd | |- ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> ( y x. ( y I z ) ) = 0 ) |
| 112 | 111 | sumeq2dv | |- ( ( ph /\ y e. { 0 } ) -> sum_ z e. ran G ( y x. ( y I z ) ) = sum_ z e. ran G 0 ) |
| 113 | 8 | adantr | |- ( ( ph /\ y e. { 0 } ) -> ran G e. Fin ) |
| 114 | 113 | olcd | |- ( ( ph /\ y e. { 0 } ) -> ( ran G C_ ( ZZ>= ` 0 ) \/ ran G e. Fin ) ) |
| 115 | sumz | |- ( ( ran G C_ ( ZZ>= ` 0 ) \/ ran G e. Fin ) -> sum_ z e. ran G 0 = 0 ) |
|
| 116 | 114 115 | syl | |- ( ( ph /\ y e. { 0 } ) -> sum_ z e. ran G 0 = 0 ) |
| 117 | 112 116 | eqtrd | |- ( ( ph /\ y e. { 0 } ) -> sum_ z e. ran G ( y x. ( y I z ) ) = 0 ) |
| 118 | 100 117 | sylan2 | |- ( ( ph /\ y e. ( ran F \ ( ran F \ { 0 } ) ) ) -> sum_ z e. ran G ( y x. ( y I z ) ) = 0 ) |
| 119 | 93 96 118 6 | fsumss | |- ( ph -> sum_ y e. ( ran F \ { 0 } ) sum_ z e. ran G ( y x. ( y I z ) ) = sum_ y e. ran F sum_ z e. ran G ( y x. ( y I z ) ) ) |
| 120 | 39 92 119 | 3eqtrd | |- ( ph -> ( S.1 ` F ) = sum_ y e. ran F sum_ z e. ran G ( y x. ( y I z ) ) ) |
| 121 | itg1val | |- ( G e. dom S.1 -> ( S.1 ` G ) = sum_ z e. ( ran G \ { 0 } ) ( z x. ( vol ` ( `' G " { z } ) ) ) ) |
|
| 122 | 2 121 | syl | |- ( ph -> ( S.1 ` G ) = sum_ z e. ( ran G \ { 0 } ) ( z x. ( vol ` ( `' G " { z } ) ) ) ) |
| 123 | 11 | adantr | |- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> F : RR --> RR ) |
| 124 | 6 | adantr | |- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ran F e. Fin ) |
| 125 | inss1 | |- ( ( `' F " { y } ) i^i ( `' G " { z } ) ) C_ ( `' F " { y } ) |
|
| 126 | 125 | a1i | |- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) C_ ( `' F " { y } ) ) |
| 127 | 45 | ad2antrr | |- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( `' F " { y } ) e. dom vol ) |
| 128 | 48 | ad2antrr | |- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( `' G " { z } ) e. dom vol ) |
| 129 | 127 128 50 | syl2anc | |- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) e. dom vol ) |
| 130 | 12 | adantr | |- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ran F C_ RR ) |
| 131 | 130 | sselda | |- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> y e. RR ) |
| 132 | 20 | ssdifssd | |- ( ph -> ( ran G \ { 0 } ) C_ RR ) |
| 133 | 132 | sselda | |- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> z e. RR ) |
| 134 | 133 | adantr | |- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> z e. RR ) |
| 135 | eldifsni | |- ( z e. ( ran G \ { 0 } ) -> z =/= 0 ) |
|
| 136 | 135 | ad2antlr | |- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> z =/= 0 ) |
| 137 | simpr | |- ( ( y = 0 /\ z = 0 ) -> z = 0 ) |
|
| 138 | 137 | necon3ai | |- ( z =/= 0 -> -. ( y = 0 /\ z = 0 ) ) |
| 139 | 136 138 | syl | |- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> -. ( y = 0 /\ z = 0 ) ) |
| 140 | 131 134 139 62 | syl21anc | |- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( y I z ) = ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
| 141 | 16 | ad2antrr | |- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> I : ( RR X. RR ) --> RR ) |
| 142 | 141 131 134 | fovcdmd | |- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( y I z ) e. RR ) |
| 143 | 140 142 | eqeltrrd | |- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) e. RR ) |
| 144 | 123 124 126 129 143 | itg1addlem1 | |- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( vol ` U_ y e. ran F ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) = sum_ y e. ran F ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
| 145 | incom | |- ( ( `' F " { y } ) i^i ( `' G " { z } ) ) = ( ( `' G " { z } ) i^i ( `' F " { y } ) ) |
|
| 146 | 145 | a1i | |- ( y e. ran F -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) = ( ( `' G " { z } ) i^i ( `' F " { y } ) ) ) |
| 147 | 146 | iuneq2i | |- U_ y e. ran F ( ( `' F " { y } ) i^i ( `' G " { z } ) ) = U_ y e. ran F ( ( `' G " { z } ) i^i ( `' F " { y } ) ) |
| 148 | iunin2 | |- U_ y e. ran F ( ( `' G " { z } ) i^i ( `' F " { y } ) ) = ( ( `' G " { z } ) i^i U_ y e. ran F ( `' F " { y } ) ) |
|
| 149 | 147 148 | eqtri | |- U_ y e. ran F ( ( `' F " { y } ) i^i ( `' G " { z } ) ) = ( ( `' G " { z } ) i^i U_ y e. ran F ( `' F " { y } ) ) |
| 150 | cnvimass | |- ( `' G " { z } ) C_ dom G |
|
| 151 | 19 | fdmd | |- ( ph -> dom G = RR ) |
| 152 | 151 | adantr | |- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> dom G = RR ) |
| 153 | 150 152 | sseqtrid | |- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( `' G " { z } ) C_ RR ) |
| 154 | iunid | |- U_ y e. ran F { y } = ran F |
|
| 155 | 154 | imaeq2i | |- ( `' F " U_ y e. ran F { y } ) = ( `' F " ran F ) |
| 156 | imaiun | |- ( `' F " U_ y e. ran F { y } ) = U_ y e. ran F ( `' F " { y } ) |
|
| 157 | cnvimarndm | |- ( `' F " ran F ) = dom F |
|
| 158 | 155 156 157 | 3eqtr3i | |- U_ y e. ran F ( `' F " { y } ) = dom F |
| 159 | 11 | fdmd | |- ( ph -> dom F = RR ) |
| 160 | 159 | adantr | |- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> dom F = RR ) |
| 161 | 158 160 | eqtrid | |- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> U_ y e. ran F ( `' F " { y } ) = RR ) |
| 162 | 153 161 | sseqtrrd | |- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( `' G " { z } ) C_ U_ y e. ran F ( `' F " { y } ) ) |
| 163 | dfss2 | |- ( ( `' G " { z } ) C_ U_ y e. ran F ( `' F " { y } ) <-> ( ( `' G " { z } ) i^i U_ y e. ran F ( `' F " { y } ) ) = ( `' G " { z } ) ) |
|
| 164 | 162 163 | sylib | |- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( ( `' G " { z } ) i^i U_ y e. ran F ( `' F " { y } ) ) = ( `' G " { z } ) ) |
| 165 | 149 164 | eqtr2id | |- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( `' G " { z } ) = U_ y e. ran F ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) |
| 166 | 165 | fveq2d | |- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( vol ` ( `' G " { z } ) ) = ( vol ` U_ y e. ran F ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
| 167 | 140 | sumeq2dv | |- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> sum_ y e. ran F ( y I z ) = sum_ y e. ran F ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
| 168 | 144 166 167 | 3eqtr4d | |- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( vol ` ( `' G " { z } ) ) = sum_ y e. ran F ( y I z ) ) |
| 169 | 168 | oveq2d | |- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( z x. ( vol ` ( `' G " { z } ) ) ) = ( z x. sum_ y e. ran F ( y I z ) ) ) |
| 170 | 133 | recnd | |- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> z e. CC ) |
| 171 | 142 | recnd | |- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( y I z ) e. CC ) |
| 172 | 124 170 171 | fsummulc2 | |- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( z x. sum_ y e. ran F ( y I z ) ) = sum_ y e. ran F ( z x. ( y I z ) ) ) |
| 173 | 169 172 | eqtrd | |- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( z x. ( vol ` ( `' G " { z } ) ) ) = sum_ y e. ran F ( z x. ( y I z ) ) ) |
| 174 | 173 | sumeq2dv | |- ( ph -> sum_ z e. ( ran G \ { 0 } ) ( z x. ( vol ` ( `' G " { z } ) ) ) = sum_ z e. ( ran G \ { 0 } ) sum_ y e. ran F ( z x. ( y I z ) ) ) |
| 175 | difssd | |- ( ph -> ( ran G \ { 0 } ) C_ ran G ) |
|
| 176 | 170 | adantr | |- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> z e. CC ) |
| 177 | 176 171 | mulcld | |- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( z x. ( y I z ) ) e. CC ) |
| 178 | 124 177 | fsumcl | |- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> sum_ y e. ran F ( z x. ( y I z ) ) e. CC ) |
| 179 | dfin4 | |- ( ran G i^i { 0 } ) = ( ran G \ ( ran G \ { 0 } ) ) |
|
| 180 | inss2 | |- ( ran G i^i { 0 } ) C_ { 0 } |
|
| 181 | 179 180 | eqsstrri | |- ( ran G \ ( ran G \ { 0 } ) ) C_ { 0 } |
| 182 | 181 | sseli | |- ( z e. ( ran G \ ( ran G \ { 0 } ) ) -> z e. { 0 } ) |
| 183 | elsni | |- ( z e. { 0 } -> z = 0 ) |
|
| 184 | 183 | ad2antlr | |- ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> z = 0 ) |
| 185 | 184 | oveq1d | |- ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> ( z x. ( y I z ) ) = ( 0 x. ( y I z ) ) ) |
| 186 | 16 | ad2antrr | |- ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> I : ( RR X. RR ) --> RR ) |
| 187 | 13 | adantlr | |- ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> y e. RR ) |
| 188 | 184 105 | eqeltrdi | |- ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> z e. RR ) |
| 189 | 186 187 188 | fovcdmd | |- ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> ( y I z ) e. RR ) |
| 190 | 189 | recnd | |- ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> ( y I z ) e. CC ) |
| 191 | 190 | mul02d | |- ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> ( 0 x. ( y I z ) ) = 0 ) |
| 192 | 185 191 | eqtrd | |- ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> ( z x. ( y I z ) ) = 0 ) |
| 193 | 192 | sumeq2dv | |- ( ( ph /\ z e. { 0 } ) -> sum_ y e. ran F ( z x. ( y I z ) ) = sum_ y e. ran F 0 ) |
| 194 | 6 | adantr | |- ( ( ph /\ z e. { 0 } ) -> ran F e. Fin ) |
| 195 | 194 | olcd | |- ( ( ph /\ z e. { 0 } ) -> ( ran F C_ ( ZZ>= ` 0 ) \/ ran F e. Fin ) ) |
| 196 | sumz | |- ( ( ran F C_ ( ZZ>= ` 0 ) \/ ran F e. Fin ) -> sum_ y e. ran F 0 = 0 ) |
|
| 197 | 195 196 | syl | |- ( ( ph /\ z e. { 0 } ) -> sum_ y e. ran F 0 = 0 ) |
| 198 | 193 197 | eqtrd | |- ( ( ph /\ z e. { 0 } ) -> sum_ y e. ran F ( z x. ( y I z ) ) = 0 ) |
| 199 | 182 198 | sylan2 | |- ( ( ph /\ z e. ( ran G \ ( ran G \ { 0 } ) ) ) -> sum_ y e. ran F ( z x. ( y I z ) ) = 0 ) |
| 200 | 175 178 199 8 | fsumss | |- ( ph -> sum_ z e. ( ran G \ { 0 } ) sum_ y e. ran F ( z x. ( y I z ) ) = sum_ z e. ran G sum_ y e. ran F ( z x. ( y I z ) ) ) |
| 201 | 21 | adantr | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> z e. RR ) |
| 202 | 201 | recnd | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> z e. CC ) |
| 203 | 16 | ad2antrr | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> I : ( RR X. RR ) --> RR ) |
| 204 | 12 | adantr | |- ( ( ph /\ z e. ran G ) -> ran F C_ RR ) |
| 205 | 204 | sselda | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> y e. RR ) |
| 206 | 203 205 201 | fovcdmd | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( y I z ) e. RR ) |
| 207 | 206 | recnd | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( y I z ) e. CC ) |
| 208 | 202 207 | mulcld | |- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( z x. ( y I z ) ) e. CC ) |
| 209 | 208 | anasss | |- ( ( ph /\ ( z e. ran G /\ y e. ran F ) ) -> ( z x. ( y I z ) ) e. CC ) |
| 210 | 8 6 209 | fsumcom | |- ( ph -> sum_ z e. ran G sum_ y e. ran F ( z x. ( y I z ) ) = sum_ y e. ran F sum_ z e. ran G ( z x. ( y I z ) ) ) |
| 211 | 200 210 | eqtrd | |- ( ph -> sum_ z e. ( ran G \ { 0 } ) sum_ y e. ran F ( z x. ( y I z ) ) = sum_ y e. ran F sum_ z e. ran G ( z x. ( y I z ) ) ) |
| 212 | 122 174 211 | 3eqtrd | |- ( ph -> ( S.1 ` G ) = sum_ y e. ran F sum_ z e. ran G ( z x. ( y I z ) ) ) |
| 213 | 120 212 | oveq12d | |- ( ph -> ( ( S.1 ` F ) + ( S.1 ` G ) ) = ( sum_ y e. ran F sum_ z e. ran G ( y x. ( y I z ) ) + sum_ y e. ran F sum_ z e. ran G ( z x. ( y I z ) ) ) ) |
| 214 | 30 37 213 | 3eqtr4d | |- ( ph -> ( S.1 ` ( F oF + G ) ) = ( ( S.1 ` F ) + ( S.1 ` G ) ) ) |