This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for itg1add . (Contributed by Mario Carneiro, 26-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | i1fadd.1 | |- ( ph -> F e. dom S.1 ) |
|
| i1fadd.2 | |- ( ph -> G e. dom S.1 ) |
||
| itg1add.3 | |- I = ( i e. RR , j e. RR |-> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) ) |
||
| Assertion | itg1addlem3 | |- ( ( ( A e. RR /\ B e. RR ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A I B ) = ( vol ` ( ( `' F " { A } ) i^i ( `' G " { B } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fadd.1 | |- ( ph -> F e. dom S.1 ) |
|
| 2 | i1fadd.2 | |- ( ph -> G e. dom S.1 ) |
|
| 3 | itg1add.3 | |- I = ( i e. RR , j e. RR |-> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) ) |
|
| 4 | eqeq1 | |- ( i = A -> ( i = 0 <-> A = 0 ) ) |
|
| 5 | eqeq1 | |- ( j = B -> ( j = 0 <-> B = 0 ) ) |
|
| 6 | 4 5 | bi2anan9 | |- ( ( i = A /\ j = B ) -> ( ( i = 0 /\ j = 0 ) <-> ( A = 0 /\ B = 0 ) ) ) |
| 7 | sneq | |- ( i = A -> { i } = { A } ) |
|
| 8 | 7 | imaeq2d | |- ( i = A -> ( `' F " { i } ) = ( `' F " { A } ) ) |
| 9 | sneq | |- ( j = B -> { j } = { B } ) |
|
| 10 | 9 | imaeq2d | |- ( j = B -> ( `' G " { j } ) = ( `' G " { B } ) ) |
| 11 | 8 10 | ineqan12d | |- ( ( i = A /\ j = B ) -> ( ( `' F " { i } ) i^i ( `' G " { j } ) ) = ( ( `' F " { A } ) i^i ( `' G " { B } ) ) ) |
| 12 | 11 | fveq2d | |- ( ( i = A /\ j = B ) -> ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) = ( vol ` ( ( `' F " { A } ) i^i ( `' G " { B } ) ) ) ) |
| 13 | 6 12 | ifbieq2d | |- ( ( i = A /\ j = B ) -> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) = if ( ( A = 0 /\ B = 0 ) , 0 , ( vol ` ( ( `' F " { A } ) i^i ( `' G " { B } ) ) ) ) ) |
| 14 | c0ex | |- 0 e. _V |
|
| 15 | fvex | |- ( vol ` ( ( `' F " { A } ) i^i ( `' G " { B } ) ) ) e. _V |
|
| 16 | 14 15 | ifex | |- if ( ( A = 0 /\ B = 0 ) , 0 , ( vol ` ( ( `' F " { A } ) i^i ( `' G " { B } ) ) ) ) e. _V |
| 17 | 13 3 16 | ovmpoa | |- ( ( A e. RR /\ B e. RR ) -> ( A I B ) = if ( ( A = 0 /\ B = 0 ) , 0 , ( vol ` ( ( `' F " { A } ) i^i ( `' G " { B } ) ) ) ) ) |
| 18 | iffalse | |- ( -. ( A = 0 /\ B = 0 ) -> if ( ( A = 0 /\ B = 0 ) , 0 , ( vol ` ( ( `' F " { A } ) i^i ( `' G " { B } ) ) ) ) = ( vol ` ( ( `' F " { A } ) i^i ( `' G " { B } ) ) ) ) |
|
| 19 | 17 18 | sylan9eq | |- ( ( ( A e. RR /\ B e. RR ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A I B ) = ( vol ` ( ( `' F " { A } ) i^i ( `' G " { B } ) ) ) ) |