This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a function to a finite set is finite. (Contributed by Alexander van der Vekens, 3-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resfnfinfin | |- ( ( F Fn A /\ B e. Fin ) -> ( F |` B ) e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel | |- ( F Fn A -> Rel F ) |
|
| 2 | 1 | adantr | |- ( ( F Fn A /\ B e. Fin ) -> Rel F ) |
| 3 | resindm | |- ( Rel F -> ( F |` ( B i^i dom F ) ) = ( F |` B ) ) |
|
| 4 | 3 | eqcomd | |- ( Rel F -> ( F |` B ) = ( F |` ( B i^i dom F ) ) ) |
| 5 | 2 4 | syl | |- ( ( F Fn A /\ B e. Fin ) -> ( F |` B ) = ( F |` ( B i^i dom F ) ) ) |
| 6 | fnfun | |- ( F Fn A -> Fun F ) |
|
| 7 | 6 | funfnd | |- ( F Fn A -> F Fn dom F ) |
| 8 | fnresin2 | |- ( F Fn dom F -> ( F |` ( B i^i dom F ) ) Fn ( B i^i dom F ) ) |
|
| 9 | infi | |- ( B e. Fin -> ( B i^i dom F ) e. Fin ) |
|
| 10 | fnfi | |- ( ( ( F |` ( B i^i dom F ) ) Fn ( B i^i dom F ) /\ ( B i^i dom F ) e. Fin ) -> ( F |` ( B i^i dom F ) ) e. Fin ) |
|
| 11 | 9 10 | sylan2 | |- ( ( ( F |` ( B i^i dom F ) ) Fn ( B i^i dom F ) /\ B e. Fin ) -> ( F |` ( B i^i dom F ) ) e. Fin ) |
| 12 | 11 | ex | |- ( ( F |` ( B i^i dom F ) ) Fn ( B i^i dom F ) -> ( B e. Fin -> ( F |` ( B i^i dom F ) ) e. Fin ) ) |
| 13 | 7 8 12 | 3syl | |- ( F Fn A -> ( B e. Fin -> ( F |` ( B i^i dom F ) ) e. Fin ) ) |
| 14 | 13 | imp | |- ( ( F Fn A /\ B e. Fin ) -> ( F |` ( B i^i dom F ) ) e. Fin ) |
| 15 | 5 14 | eqeltrd | |- ( ( F Fn A /\ B e. Fin ) -> ( F |` B ) e. Fin ) |