This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dom2d.1 | |- ( ph -> ( x e. A -> C e. B ) ) |
|
| dom2d.2 | |- ( ph -> ( ( x e. A /\ y e. A ) -> ( C = D <-> x = y ) ) ) |
||
| Assertion | dom2lem | |- ( ph -> ( x e. A |-> C ) : A -1-1-> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dom2d.1 | |- ( ph -> ( x e. A -> C e. B ) ) |
|
| 2 | dom2d.2 | |- ( ph -> ( ( x e. A /\ y e. A ) -> ( C = D <-> x = y ) ) ) |
|
| 3 | 1 | ralrimiv | |- ( ph -> A. x e. A C e. B ) |
| 4 | eqid | |- ( x e. A |-> C ) = ( x e. A |-> C ) |
|
| 5 | 4 | fmpt | |- ( A. x e. A C e. B <-> ( x e. A |-> C ) : A --> B ) |
| 6 | 3 5 | sylib | |- ( ph -> ( x e. A |-> C ) : A --> B ) |
| 7 | 1 | imp | |- ( ( ph /\ x e. A ) -> C e. B ) |
| 8 | 4 | fvmpt2 | |- ( ( x e. A /\ C e. B ) -> ( ( x e. A |-> C ) ` x ) = C ) |
| 9 | 8 | adantll | |- ( ( ( ph /\ x e. A ) /\ C e. B ) -> ( ( x e. A |-> C ) ` x ) = C ) |
| 10 | 7 9 | mpdan | |- ( ( ph /\ x e. A ) -> ( ( x e. A |-> C ) ` x ) = C ) |
| 11 | 10 | adantrr | |- ( ( ph /\ ( x e. A /\ y e. A ) ) -> ( ( x e. A |-> C ) ` x ) = C ) |
| 12 | nfv | |- F/ x ( ph /\ y e. A ) |
|
| 13 | nffvmpt1 | |- F/_ x ( ( x e. A |-> C ) ` y ) |
|
| 14 | 13 | nfeq1 | |- F/ x ( ( x e. A |-> C ) ` y ) = D |
| 15 | 12 14 | nfim | |- F/ x ( ( ph /\ y e. A ) -> ( ( x e. A |-> C ) ` y ) = D ) |
| 16 | eleq1w | |- ( x = y -> ( x e. A <-> y e. A ) ) |
|
| 17 | 16 | anbi2d | |- ( x = y -> ( ( ph /\ x e. A ) <-> ( ph /\ y e. A ) ) ) |
| 18 | 17 | imbi1d | |- ( x = y -> ( ( ( ph /\ x e. A ) -> ( ( x e. A |-> C ) ` x ) = C ) <-> ( ( ph /\ y e. A ) -> ( ( x e. A |-> C ) ` x ) = C ) ) ) |
| 19 | 16 | anbi1d | |- ( x = y -> ( ( x e. A /\ y e. A ) <-> ( y e. A /\ y e. A ) ) ) |
| 20 | anidm | |- ( ( y e. A /\ y e. A ) <-> y e. A ) |
|
| 21 | 19 20 | bitrdi | |- ( x = y -> ( ( x e. A /\ y e. A ) <-> y e. A ) ) |
| 22 | 21 | anbi2d | |- ( x = y -> ( ( ph /\ ( x e. A /\ y e. A ) ) <-> ( ph /\ y e. A ) ) ) |
| 23 | fveq2 | |- ( x = y -> ( ( x e. A |-> C ) ` x ) = ( ( x e. A |-> C ) ` y ) ) |
|
| 24 | 23 | adantr | |- ( ( x = y /\ ( ph /\ ( x e. A /\ y e. A ) ) ) -> ( ( x e. A |-> C ) ` x ) = ( ( x e. A |-> C ) ` y ) ) |
| 25 | 2 | imp | |- ( ( ph /\ ( x e. A /\ y e. A ) ) -> ( C = D <-> x = y ) ) |
| 26 | 25 | biimparc | |- ( ( x = y /\ ( ph /\ ( x e. A /\ y e. A ) ) ) -> C = D ) |
| 27 | 24 26 | eqeq12d | |- ( ( x = y /\ ( ph /\ ( x e. A /\ y e. A ) ) ) -> ( ( ( x e. A |-> C ) ` x ) = C <-> ( ( x e. A |-> C ) ` y ) = D ) ) |
| 28 | 27 | ex | |- ( x = y -> ( ( ph /\ ( x e. A /\ y e. A ) ) -> ( ( ( x e. A |-> C ) ` x ) = C <-> ( ( x e. A |-> C ) ` y ) = D ) ) ) |
| 29 | 22 28 | sylbird | |- ( x = y -> ( ( ph /\ y e. A ) -> ( ( ( x e. A |-> C ) ` x ) = C <-> ( ( x e. A |-> C ) ` y ) = D ) ) ) |
| 30 | 29 | pm5.74d | |- ( x = y -> ( ( ( ph /\ y e. A ) -> ( ( x e. A |-> C ) ` x ) = C ) <-> ( ( ph /\ y e. A ) -> ( ( x e. A |-> C ) ` y ) = D ) ) ) |
| 31 | 18 30 | bitrd | |- ( x = y -> ( ( ( ph /\ x e. A ) -> ( ( x e. A |-> C ) ` x ) = C ) <-> ( ( ph /\ y e. A ) -> ( ( x e. A |-> C ) ` y ) = D ) ) ) |
| 32 | 15 31 10 | chvarfv | |- ( ( ph /\ y e. A ) -> ( ( x e. A |-> C ) ` y ) = D ) |
| 33 | 32 | adantrl | |- ( ( ph /\ ( x e. A /\ y e. A ) ) -> ( ( x e. A |-> C ) ` y ) = D ) |
| 34 | 11 33 | eqeq12d | |- ( ( ph /\ ( x e. A /\ y e. A ) ) -> ( ( ( x e. A |-> C ) ` x ) = ( ( x e. A |-> C ) ` y ) <-> C = D ) ) |
| 35 | 25 | biimpd | |- ( ( ph /\ ( x e. A /\ y e. A ) ) -> ( C = D -> x = y ) ) |
| 36 | 34 35 | sylbid | |- ( ( ph /\ ( x e. A /\ y e. A ) ) -> ( ( ( x e. A |-> C ) ` x ) = ( ( x e. A |-> C ) ` y ) -> x = y ) ) |
| 37 | 36 | ralrimivva | |- ( ph -> A. x e. A A. y e. A ( ( ( x e. A |-> C ) ` x ) = ( ( x e. A |-> C ) ` y ) -> x = y ) ) |
| 38 | nfmpt1 | |- F/_ x ( x e. A |-> C ) |
|
| 39 | nfcv | |- F/_ y ( x e. A |-> C ) |
|
| 40 | 38 39 | dff13f | |- ( ( x e. A |-> C ) : A -1-1-> B <-> ( ( x e. A |-> C ) : A --> B /\ A. x e. A A. y e. A ( ( ( x e. A |-> C ) ` x ) = ( ( x e. A |-> C ) ` y ) -> x = y ) ) ) |
| 41 | 6 37 40 | sylanbrc | |- ( ph -> ( x e. A |-> C ) : A -1-1-> B ) |