This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsummulc2.1 | |- ( ph -> A e. Fin ) |
|
| fsummulc2.2 | |- ( ph -> C e. CC ) |
||
| fsummulc2.3 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| Assertion | fsummulc2 | |- ( ph -> ( C x. sum_ k e. A B ) = sum_ k e. A ( C x. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsummulc2.1 | |- ( ph -> A e. Fin ) |
|
| 2 | fsummulc2.2 | |- ( ph -> C e. CC ) |
|
| 3 | fsummulc2.3 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 4 | 2 | mul01d | |- ( ph -> ( C x. 0 ) = 0 ) |
| 5 | sumeq1 | |- ( A = (/) -> sum_ k e. A B = sum_ k e. (/) B ) |
|
| 6 | sum0 | |- sum_ k e. (/) B = 0 |
|
| 7 | 5 6 | eqtrdi | |- ( A = (/) -> sum_ k e. A B = 0 ) |
| 8 | 7 | oveq2d | |- ( A = (/) -> ( C x. sum_ k e. A B ) = ( C x. 0 ) ) |
| 9 | sumeq1 | |- ( A = (/) -> sum_ k e. A ( C x. B ) = sum_ k e. (/) ( C x. B ) ) |
|
| 10 | sum0 | |- sum_ k e. (/) ( C x. B ) = 0 |
|
| 11 | 9 10 | eqtrdi | |- ( A = (/) -> sum_ k e. A ( C x. B ) = 0 ) |
| 12 | 8 11 | eqeq12d | |- ( A = (/) -> ( ( C x. sum_ k e. A B ) = sum_ k e. A ( C x. B ) <-> ( C x. 0 ) = 0 ) ) |
| 13 | 4 12 | syl5ibrcom | |- ( ph -> ( A = (/) -> ( C x. sum_ k e. A B ) = sum_ k e. A ( C x. B ) ) ) |
| 14 | addcl | |- ( ( n e. CC /\ m e. CC ) -> ( n + m ) e. CC ) |
|
| 15 | 14 | adantl | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ ( n e. CC /\ m e. CC ) ) -> ( n + m ) e. CC ) |
| 16 | 2 | adantr | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> C e. CC ) |
| 17 | adddi | |- ( ( C e. CC /\ n e. CC /\ m e. CC ) -> ( C x. ( n + m ) ) = ( ( C x. n ) + ( C x. m ) ) ) |
|
| 18 | 17 | 3expb | |- ( ( C e. CC /\ ( n e. CC /\ m e. CC ) ) -> ( C x. ( n + m ) ) = ( ( C x. n ) + ( C x. m ) ) ) |
| 19 | 16 18 | sylan | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ ( n e. CC /\ m e. CC ) ) -> ( C x. ( n + m ) ) = ( ( C x. n ) + ( C x. m ) ) ) |
| 20 | simprl | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( # ` A ) e. NN ) |
|
| 21 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 22 | 20 21 | eleqtrdi | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( # ` A ) e. ( ZZ>= ` 1 ) ) |
| 23 | 3 | fmpttd | |- ( ph -> ( k e. A |-> B ) : A --> CC ) |
| 24 | 23 | ad2antrr | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( k e. A |-> B ) : A --> CC ) |
| 25 | simprr | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
|
| 26 | 25 | adantr | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
| 27 | f1of | |- ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> f : ( 1 ... ( # ` A ) ) --> A ) |
|
| 28 | 26 27 | syl | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> f : ( 1 ... ( # ` A ) ) --> A ) |
| 29 | fco | |- ( ( ( k e. A |-> B ) : A --> CC /\ f : ( 1 ... ( # ` A ) ) --> A ) -> ( ( k e. A |-> B ) o. f ) : ( 1 ... ( # ` A ) ) --> CC ) |
|
| 30 | 24 28 29 | syl2anc | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( k e. A |-> B ) o. f ) : ( 1 ... ( # ` A ) ) --> CC ) |
| 31 | simpr | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> n e. ( 1 ... ( # ` A ) ) ) |
|
| 32 | 30 31 | ffvelcdmd | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` n ) e. CC ) |
| 33 | 28 31 | ffvelcdmd | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( f ` n ) e. A ) |
| 34 | simpr | |- ( ( ph /\ k e. A ) -> k e. A ) |
|
| 35 | 2 | adantr | |- ( ( ph /\ k e. A ) -> C e. CC ) |
| 36 | 35 3 | mulcld | |- ( ( ph /\ k e. A ) -> ( C x. B ) e. CC ) |
| 37 | eqid | |- ( k e. A |-> ( C x. B ) ) = ( k e. A |-> ( C x. B ) ) |
|
| 38 | 37 | fvmpt2 | |- ( ( k e. A /\ ( C x. B ) e. CC ) -> ( ( k e. A |-> ( C x. B ) ) ` k ) = ( C x. B ) ) |
| 39 | 34 36 38 | syl2anc | |- ( ( ph /\ k e. A ) -> ( ( k e. A |-> ( C x. B ) ) ` k ) = ( C x. B ) ) |
| 40 | eqid | |- ( k e. A |-> B ) = ( k e. A |-> B ) |
|
| 41 | 40 | fvmpt2 | |- ( ( k e. A /\ B e. CC ) -> ( ( k e. A |-> B ) ` k ) = B ) |
| 42 | 34 3 41 | syl2anc | |- ( ( ph /\ k e. A ) -> ( ( k e. A |-> B ) ` k ) = B ) |
| 43 | 42 | oveq2d | |- ( ( ph /\ k e. A ) -> ( C x. ( ( k e. A |-> B ) ` k ) ) = ( C x. B ) ) |
| 44 | 39 43 | eqtr4d | |- ( ( ph /\ k e. A ) -> ( ( k e. A |-> ( C x. B ) ) ` k ) = ( C x. ( ( k e. A |-> B ) ` k ) ) ) |
| 45 | 44 | ralrimiva | |- ( ph -> A. k e. A ( ( k e. A |-> ( C x. B ) ) ` k ) = ( C x. ( ( k e. A |-> B ) ` k ) ) ) |
| 46 | 45 | ad2antrr | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> A. k e. A ( ( k e. A |-> ( C x. B ) ) ` k ) = ( C x. ( ( k e. A |-> B ) ` k ) ) ) |
| 47 | nffvmpt1 | |- F/_ k ( ( k e. A |-> ( C x. B ) ) ` ( f ` n ) ) |
|
| 48 | nfcv | |- F/_ k C |
|
| 49 | nfcv | |- F/_ k x. |
|
| 50 | nffvmpt1 | |- F/_ k ( ( k e. A |-> B ) ` ( f ` n ) ) |
|
| 51 | 48 49 50 | nfov | |- F/_ k ( C x. ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
| 52 | 47 51 | nfeq | |- F/ k ( ( k e. A |-> ( C x. B ) ) ` ( f ` n ) ) = ( C x. ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
| 53 | fveq2 | |- ( k = ( f ` n ) -> ( ( k e. A |-> ( C x. B ) ) ` k ) = ( ( k e. A |-> ( C x. B ) ) ` ( f ` n ) ) ) |
|
| 54 | fveq2 | |- ( k = ( f ` n ) -> ( ( k e. A |-> B ) ` k ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
|
| 55 | 54 | oveq2d | |- ( k = ( f ` n ) -> ( C x. ( ( k e. A |-> B ) ` k ) ) = ( C x. ( ( k e. A |-> B ) ` ( f ` n ) ) ) ) |
| 56 | 53 55 | eqeq12d | |- ( k = ( f ` n ) -> ( ( ( k e. A |-> ( C x. B ) ) ` k ) = ( C x. ( ( k e. A |-> B ) ` k ) ) <-> ( ( k e. A |-> ( C x. B ) ) ` ( f ` n ) ) = ( C x. ( ( k e. A |-> B ) ` ( f ` n ) ) ) ) ) |
| 57 | 52 56 | rspc | |- ( ( f ` n ) e. A -> ( A. k e. A ( ( k e. A |-> ( C x. B ) ) ` k ) = ( C x. ( ( k e. A |-> B ) ` k ) ) -> ( ( k e. A |-> ( C x. B ) ) ` ( f ` n ) ) = ( C x. ( ( k e. A |-> B ) ` ( f ` n ) ) ) ) ) |
| 58 | 33 46 57 | sylc | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( k e. A |-> ( C x. B ) ) ` ( f ` n ) ) = ( C x. ( ( k e. A |-> B ) ` ( f ` n ) ) ) ) |
| 59 | 27 | ad2antll | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> f : ( 1 ... ( # ` A ) ) --> A ) |
| 60 | fvco3 | |- ( ( f : ( 1 ... ( # ` A ) ) --> A /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> ( C x. B ) ) o. f ) ` n ) = ( ( k e. A |-> ( C x. B ) ) ` ( f ` n ) ) ) |
|
| 61 | 59 60 | sylan | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> ( C x. B ) ) o. f ) ` n ) = ( ( k e. A |-> ( C x. B ) ) ` ( f ` n ) ) ) |
| 62 | fvco3 | |- ( ( f : ( 1 ... ( # ` A ) ) --> A /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` n ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
|
| 63 | 59 62 | sylan | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` n ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
| 64 | 63 | oveq2d | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( C x. ( ( ( k e. A |-> B ) o. f ) ` n ) ) = ( C x. ( ( k e. A |-> B ) ` ( f ` n ) ) ) ) |
| 65 | 58 61 64 | 3eqtr4d | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> ( C x. B ) ) o. f ) ` n ) = ( C x. ( ( ( k e. A |-> B ) o. f ) ` n ) ) ) |
| 66 | 15 19 22 32 65 | seqdistr | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( seq 1 ( + , ( ( k e. A |-> ( C x. B ) ) o. f ) ) ` ( # ` A ) ) = ( C x. ( seq 1 ( + , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) ) ) |
| 67 | fveq2 | |- ( m = ( f ` n ) -> ( ( k e. A |-> ( C x. B ) ) ` m ) = ( ( k e. A |-> ( C x. B ) ) ` ( f ` n ) ) ) |
|
| 68 | 36 | fmpttd | |- ( ph -> ( k e. A |-> ( C x. B ) ) : A --> CC ) |
| 69 | 68 | adantr | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( k e. A |-> ( C x. B ) ) : A --> CC ) |
| 70 | 69 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ m e. A ) -> ( ( k e. A |-> ( C x. B ) ) ` m ) e. CC ) |
| 71 | 67 20 25 70 61 | fsum | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> sum_ m e. A ( ( k e. A |-> ( C x. B ) ) ` m ) = ( seq 1 ( + , ( ( k e. A |-> ( C x. B ) ) o. f ) ) ` ( # ` A ) ) ) |
| 72 | fveq2 | |- ( m = ( f ` n ) -> ( ( k e. A |-> B ) ` m ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
|
| 73 | 23 | adantr | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( k e. A |-> B ) : A --> CC ) |
| 74 | 73 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ m e. A ) -> ( ( k e. A |-> B ) ` m ) e. CC ) |
| 75 | 72 20 25 74 63 | fsum | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> sum_ m e. A ( ( k e. A |-> B ) ` m ) = ( seq 1 ( + , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) ) |
| 76 | 75 | oveq2d | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( C x. sum_ m e. A ( ( k e. A |-> B ) ` m ) ) = ( C x. ( seq 1 ( + , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) ) ) |
| 77 | 66 71 76 | 3eqtr4rd | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( C x. sum_ m e. A ( ( k e. A |-> B ) ` m ) ) = sum_ m e. A ( ( k e. A |-> ( C x. B ) ) ` m ) ) |
| 78 | sumfc | |- sum_ m e. A ( ( k e. A |-> B ) ` m ) = sum_ k e. A B |
|
| 79 | 78 | oveq2i | |- ( C x. sum_ m e. A ( ( k e. A |-> B ) ` m ) ) = ( C x. sum_ k e. A B ) |
| 80 | sumfc | |- sum_ m e. A ( ( k e. A |-> ( C x. B ) ) ` m ) = sum_ k e. A ( C x. B ) |
|
| 81 | 77 79 80 | 3eqtr3g | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( C x. sum_ k e. A B ) = sum_ k e. A ( C x. B ) ) |
| 82 | 81 | expr | |- ( ( ph /\ ( # ` A ) e. NN ) -> ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> ( C x. sum_ k e. A B ) = sum_ k e. A ( C x. B ) ) ) |
| 83 | 82 | exlimdv | |- ( ( ph /\ ( # ` A ) e. NN ) -> ( E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> ( C x. sum_ k e. A B ) = sum_ k e. A ( C x. B ) ) ) |
| 84 | 83 | expimpd | |- ( ph -> ( ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( C x. sum_ k e. A B ) = sum_ k e. A ( C x. B ) ) ) |
| 85 | fz1f1o | |- ( A e. Fin -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
|
| 86 | 1 85 | syl | |- ( ph -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
| 87 | 13 84 86 | mpjaod | |- ( ph -> ( C x. sum_ k e. A B ) = sum_ k e. A ( C x. B ) ) |