This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset theorem for Cartesian product. Generalization of Theorem 101 of Suppes p. 52. (Contributed by NM, 26-Aug-1995) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpss12 | |- ( ( A C_ B /\ C C_ D ) -> ( A X. C ) C_ ( B X. D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | |- ( A C_ B -> ( x e. A -> x e. B ) ) |
|
| 2 | ssel | |- ( C C_ D -> ( y e. C -> y e. D ) ) |
|
| 3 | 1 2 | im2anan9 | |- ( ( A C_ B /\ C C_ D ) -> ( ( x e. A /\ y e. C ) -> ( x e. B /\ y e. D ) ) ) |
| 4 | 3 | ssopab2dv | |- ( ( A C_ B /\ C C_ D ) -> { <. x , y >. | ( x e. A /\ y e. C ) } C_ { <. x , y >. | ( x e. B /\ y e. D ) } ) |
| 5 | df-xp | |- ( A X. C ) = { <. x , y >. | ( x e. A /\ y e. C ) } |
|
| 6 | df-xp | |- ( B X. D ) = { <. x , y >. | ( x e. B /\ y e. D ) } |
|
| 7 | 4 5 6 | 3sstr4g | |- ( ( A C_ B /\ C C_ D ) -> ( A X. C ) C_ ( B X. D ) ) |