This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two simple functions is a simple function. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | i1fadd.1 | |- ( ph -> F e. dom S.1 ) |
|
| i1fadd.2 | |- ( ph -> G e. dom S.1 ) |
||
| Assertion | i1fadd | |- ( ph -> ( F oF + G ) e. dom S.1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fadd.1 | |- ( ph -> F e. dom S.1 ) |
|
| 2 | i1fadd.2 | |- ( ph -> G e. dom S.1 ) |
|
| 3 | readdcl | |- ( ( x e. RR /\ y e. RR ) -> ( x + y ) e. RR ) |
|
| 4 | 3 | adantl | |- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( x + y ) e. RR ) |
| 5 | i1ff | |- ( F e. dom S.1 -> F : RR --> RR ) |
|
| 6 | 1 5 | syl | |- ( ph -> F : RR --> RR ) |
| 7 | i1ff | |- ( G e. dom S.1 -> G : RR --> RR ) |
|
| 8 | 2 7 | syl | |- ( ph -> G : RR --> RR ) |
| 9 | reex | |- RR e. _V |
|
| 10 | 9 | a1i | |- ( ph -> RR e. _V ) |
| 11 | inidm | |- ( RR i^i RR ) = RR |
|
| 12 | 4 6 8 10 10 11 | off | |- ( ph -> ( F oF + G ) : RR --> RR ) |
| 13 | i1frn | |- ( F e. dom S.1 -> ran F e. Fin ) |
|
| 14 | 1 13 | syl | |- ( ph -> ran F e. Fin ) |
| 15 | i1frn | |- ( G e. dom S.1 -> ran G e. Fin ) |
|
| 16 | 2 15 | syl | |- ( ph -> ran G e. Fin ) |
| 17 | xpfi | |- ( ( ran F e. Fin /\ ran G e. Fin ) -> ( ran F X. ran G ) e. Fin ) |
|
| 18 | 14 16 17 | syl2anc | |- ( ph -> ( ran F X. ran G ) e. Fin ) |
| 19 | eqid | |- ( u e. ran F , v e. ran G |-> ( u + v ) ) = ( u e. ran F , v e. ran G |-> ( u + v ) ) |
|
| 20 | ovex | |- ( u + v ) e. _V |
|
| 21 | 19 20 | fnmpoi | |- ( u e. ran F , v e. ran G |-> ( u + v ) ) Fn ( ran F X. ran G ) |
| 22 | dffn4 | |- ( ( u e. ran F , v e. ran G |-> ( u + v ) ) Fn ( ran F X. ran G ) <-> ( u e. ran F , v e. ran G |-> ( u + v ) ) : ( ran F X. ran G ) -onto-> ran ( u e. ran F , v e. ran G |-> ( u + v ) ) ) |
|
| 23 | 21 22 | mpbi | |- ( u e. ran F , v e. ran G |-> ( u + v ) ) : ( ran F X. ran G ) -onto-> ran ( u e. ran F , v e. ran G |-> ( u + v ) ) |
| 24 | fofi | |- ( ( ( ran F X. ran G ) e. Fin /\ ( u e. ran F , v e. ran G |-> ( u + v ) ) : ( ran F X. ran G ) -onto-> ran ( u e. ran F , v e. ran G |-> ( u + v ) ) ) -> ran ( u e. ran F , v e. ran G |-> ( u + v ) ) e. Fin ) |
|
| 25 | 18 23 24 | sylancl | |- ( ph -> ran ( u e. ran F , v e. ran G |-> ( u + v ) ) e. Fin ) |
| 26 | eqid | |- ( x + y ) = ( x + y ) |
|
| 27 | rspceov | |- ( ( x e. ran F /\ y e. ran G /\ ( x + y ) = ( x + y ) ) -> E. u e. ran F E. v e. ran G ( x + y ) = ( u + v ) ) |
|
| 28 | 26 27 | mp3an3 | |- ( ( x e. ran F /\ y e. ran G ) -> E. u e. ran F E. v e. ran G ( x + y ) = ( u + v ) ) |
| 29 | ovex | |- ( x + y ) e. _V |
|
| 30 | eqeq1 | |- ( w = ( x + y ) -> ( w = ( u + v ) <-> ( x + y ) = ( u + v ) ) ) |
|
| 31 | 30 | 2rexbidv | |- ( w = ( x + y ) -> ( E. u e. ran F E. v e. ran G w = ( u + v ) <-> E. u e. ran F E. v e. ran G ( x + y ) = ( u + v ) ) ) |
| 32 | 29 31 | elab | |- ( ( x + y ) e. { w | E. u e. ran F E. v e. ran G w = ( u + v ) } <-> E. u e. ran F E. v e. ran G ( x + y ) = ( u + v ) ) |
| 33 | 28 32 | sylibr | |- ( ( x e. ran F /\ y e. ran G ) -> ( x + y ) e. { w | E. u e. ran F E. v e. ran G w = ( u + v ) } ) |
| 34 | 33 | adantl | |- ( ( ph /\ ( x e. ran F /\ y e. ran G ) ) -> ( x + y ) e. { w | E. u e. ran F E. v e. ran G w = ( u + v ) } ) |
| 35 | 6 | ffnd | |- ( ph -> F Fn RR ) |
| 36 | dffn3 | |- ( F Fn RR <-> F : RR --> ran F ) |
|
| 37 | 35 36 | sylib | |- ( ph -> F : RR --> ran F ) |
| 38 | 8 | ffnd | |- ( ph -> G Fn RR ) |
| 39 | dffn3 | |- ( G Fn RR <-> G : RR --> ran G ) |
|
| 40 | 38 39 | sylib | |- ( ph -> G : RR --> ran G ) |
| 41 | 34 37 40 10 10 11 | off | |- ( ph -> ( F oF + G ) : RR --> { w | E. u e. ran F E. v e. ran G w = ( u + v ) } ) |
| 42 | 41 | frnd | |- ( ph -> ran ( F oF + G ) C_ { w | E. u e. ran F E. v e. ran G w = ( u + v ) } ) |
| 43 | 19 | rnmpo | |- ran ( u e. ran F , v e. ran G |-> ( u + v ) ) = { w | E. u e. ran F E. v e. ran G w = ( u + v ) } |
| 44 | 42 43 | sseqtrrdi | |- ( ph -> ran ( F oF + G ) C_ ran ( u e. ran F , v e. ran G |-> ( u + v ) ) ) |
| 45 | 25 44 | ssfid | |- ( ph -> ran ( F oF + G ) e. Fin ) |
| 46 | 12 | frnd | |- ( ph -> ran ( F oF + G ) C_ RR ) |
| 47 | 46 | ssdifssd | |- ( ph -> ( ran ( F oF + G ) \ { 0 } ) C_ RR ) |
| 48 | 47 | sselda | |- ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) -> y e. RR ) |
| 49 | 48 | recnd | |- ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) -> y e. CC ) |
| 50 | 1 2 | i1faddlem | |- ( ( ph /\ y e. CC ) -> ( `' ( F oF + G ) " { y } ) = U_ z e. ran G ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) ) |
| 51 | 49 50 | syldan | |- ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) -> ( `' ( F oF + G ) " { y } ) = U_ z e. ran G ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) ) |
| 52 | 16 | adantr | |- ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) -> ran G e. Fin ) |
| 53 | 1 | ad2antrr | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ z e. ran G ) -> F e. dom S.1 ) |
| 54 | i1fmbf | |- ( F e. dom S.1 -> F e. MblFn ) |
|
| 55 | 53 54 | syl | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ z e. ran G ) -> F e. MblFn ) |
| 56 | 6 | ad2antrr | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ z e. ran G ) -> F : RR --> RR ) |
| 57 | 12 | ad2antrr | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ z e. ran G ) -> ( F oF + G ) : RR --> RR ) |
| 58 | 57 | frnd | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ z e. ran G ) -> ran ( F oF + G ) C_ RR ) |
| 59 | eldifi | |- ( y e. ( ran ( F oF + G ) \ { 0 } ) -> y e. ran ( F oF + G ) ) |
|
| 60 | 59 | ad2antlr | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ z e. ran G ) -> y e. ran ( F oF + G ) ) |
| 61 | 58 60 | sseldd | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ z e. ran G ) -> y e. RR ) |
| 62 | 8 | adantr | |- ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) -> G : RR --> RR ) |
| 63 | 62 | frnd | |- ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) -> ran G C_ RR ) |
| 64 | 63 | sselda | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ z e. ran G ) -> z e. RR ) |
| 65 | 61 64 | resubcld | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ z e. ran G ) -> ( y - z ) e. RR ) |
| 66 | mbfimasn | |- ( ( F e. MblFn /\ F : RR --> RR /\ ( y - z ) e. RR ) -> ( `' F " { ( y - z ) } ) e. dom vol ) |
|
| 67 | 55 56 65 66 | syl3anc | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ z e. ran G ) -> ( `' F " { ( y - z ) } ) e. dom vol ) |
| 68 | 2 | ad2antrr | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ z e. ran G ) -> G e. dom S.1 ) |
| 69 | i1fmbf | |- ( G e. dom S.1 -> G e. MblFn ) |
|
| 70 | 68 69 | syl | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ z e. ran G ) -> G e. MblFn ) |
| 71 | 8 | ad2antrr | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ z e. ran G ) -> G : RR --> RR ) |
| 72 | mbfimasn | |- ( ( G e. MblFn /\ G : RR --> RR /\ z e. RR ) -> ( `' G " { z } ) e. dom vol ) |
|
| 73 | 70 71 64 72 | syl3anc | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ z e. ran G ) -> ( `' G " { z } ) e. dom vol ) |
| 74 | inmbl | |- ( ( ( `' F " { ( y - z ) } ) e. dom vol /\ ( `' G " { z } ) e. dom vol ) -> ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) |
|
| 75 | 67 73 74 | syl2anc | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ z e. ran G ) -> ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) |
| 76 | 75 | ralrimiva | |- ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) -> A. z e. ran G ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) |
| 77 | finiunmbl | |- ( ( ran G e. Fin /\ A. z e. ran G ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) -> U_ z e. ran G ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) |
|
| 78 | 52 76 77 | syl2anc | |- ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) -> U_ z e. ran G ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) |
| 79 | 51 78 | eqeltrd | |- ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) -> ( `' ( F oF + G ) " { y } ) e. dom vol ) |
| 80 | mblvol | |- ( ( `' ( F oF + G ) " { y } ) e. dom vol -> ( vol ` ( `' ( F oF + G ) " { y } ) ) = ( vol* ` ( `' ( F oF + G ) " { y } ) ) ) |
|
| 81 | 79 80 | syl | |- ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) -> ( vol ` ( `' ( F oF + G ) " { y } ) ) = ( vol* ` ( `' ( F oF + G ) " { y } ) ) ) |
| 82 | mblss | |- ( ( `' ( F oF + G ) " { y } ) e. dom vol -> ( `' ( F oF + G ) " { y } ) C_ RR ) |
|
| 83 | 79 82 | syl | |- ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) -> ( `' ( F oF + G ) " { y } ) C_ RR ) |
| 84 | inss1 | |- ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) C_ ( `' F " { ( y - z ) } ) |
|
| 85 | 67 | adantrr | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ ( z e. ran G /\ z = 0 ) ) -> ( `' F " { ( y - z ) } ) e. dom vol ) |
| 86 | mblss | |- ( ( `' F " { ( y - z ) } ) e. dom vol -> ( `' F " { ( y - z ) } ) C_ RR ) |
|
| 87 | 85 86 | syl | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ ( z e. ran G /\ z = 0 ) ) -> ( `' F " { ( y - z ) } ) C_ RR ) |
| 88 | mblvol | |- ( ( `' F " { ( y - z ) } ) e. dom vol -> ( vol ` ( `' F " { ( y - z ) } ) ) = ( vol* ` ( `' F " { ( y - z ) } ) ) ) |
|
| 89 | 85 88 | syl | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ ( z e. ran G /\ z = 0 ) ) -> ( vol ` ( `' F " { ( y - z ) } ) ) = ( vol* ` ( `' F " { ( y - z ) } ) ) ) |
| 90 | simprr | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ ( z e. ran G /\ z = 0 ) ) -> z = 0 ) |
|
| 91 | 90 | oveq2d | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ ( z e. ran G /\ z = 0 ) ) -> ( y - z ) = ( y - 0 ) ) |
| 92 | 49 | adantr | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ ( z e. ran G /\ z = 0 ) ) -> y e. CC ) |
| 93 | 92 | subid1d | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ ( z e. ran G /\ z = 0 ) ) -> ( y - 0 ) = y ) |
| 94 | 91 93 | eqtrd | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ ( z e. ran G /\ z = 0 ) ) -> ( y - z ) = y ) |
| 95 | 94 | sneqd | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ ( z e. ran G /\ z = 0 ) ) -> { ( y - z ) } = { y } ) |
| 96 | 95 | imaeq2d | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ ( z e. ran G /\ z = 0 ) ) -> ( `' F " { ( y - z ) } ) = ( `' F " { y } ) ) |
| 97 | 96 | fveq2d | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ ( z e. ran G /\ z = 0 ) ) -> ( vol ` ( `' F " { ( y - z ) } ) ) = ( vol ` ( `' F " { y } ) ) ) |
| 98 | i1fima2sn | |- ( ( F e. dom S.1 /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) -> ( vol ` ( `' F " { y } ) ) e. RR ) |
|
| 99 | 1 98 | sylan | |- ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) -> ( vol ` ( `' F " { y } ) ) e. RR ) |
| 100 | 99 | adantr | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ ( z e. ran G /\ z = 0 ) ) -> ( vol ` ( `' F " { y } ) ) e. RR ) |
| 101 | 97 100 | eqeltrd | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ ( z e. ran G /\ z = 0 ) ) -> ( vol ` ( `' F " { ( y - z ) } ) ) e. RR ) |
| 102 | 89 101 | eqeltrrd | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ ( z e. ran G /\ z = 0 ) ) -> ( vol* ` ( `' F " { ( y - z ) } ) ) e. RR ) |
| 103 | ovolsscl | |- ( ( ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) C_ ( `' F " { ( y - z ) } ) /\ ( `' F " { ( y - z ) } ) C_ RR /\ ( vol* ` ( `' F " { ( y - z ) } ) ) e. RR ) -> ( vol* ` ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) |
|
| 104 | 84 87 102 103 | mp3an2i | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ ( z e. ran G /\ z = 0 ) ) -> ( vol* ` ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) |
| 105 | 104 | expr | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ z e. ran G ) -> ( z = 0 -> ( vol* ` ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) ) |
| 106 | eldifsn | |- ( z e. ( ran G \ { 0 } ) <-> ( z e. ran G /\ z =/= 0 ) ) |
|
| 107 | inss2 | |- ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) C_ ( `' G " { z } ) |
|
| 108 | eldifi | |- ( z e. ( ran G \ { 0 } ) -> z e. ran G ) |
|
| 109 | mblss | |- ( ( `' G " { z } ) e. dom vol -> ( `' G " { z } ) C_ RR ) |
|
| 110 | 73 109 | syl | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ z e. ran G ) -> ( `' G " { z } ) C_ RR ) |
| 111 | 108 110 | sylan2 | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( `' G " { z } ) C_ RR ) |
| 112 | i1fima | |- ( G e. dom S.1 -> ( `' G " { z } ) e. dom vol ) |
|
| 113 | 2 112 | syl | |- ( ph -> ( `' G " { z } ) e. dom vol ) |
| 114 | 113 | ad2antrr | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( `' G " { z } ) e. dom vol ) |
| 115 | mblvol | |- ( ( `' G " { z } ) e. dom vol -> ( vol ` ( `' G " { z } ) ) = ( vol* ` ( `' G " { z } ) ) ) |
|
| 116 | 114 115 | syl | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( vol ` ( `' G " { z } ) ) = ( vol* ` ( `' G " { z } ) ) ) |
| 117 | 2 | adantr | |- ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) -> G e. dom S.1 ) |
| 118 | i1fima2sn | |- ( ( G e. dom S.1 /\ z e. ( ran G \ { 0 } ) ) -> ( vol ` ( `' G " { z } ) ) e. RR ) |
|
| 119 | 117 118 | sylan | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( vol ` ( `' G " { z } ) ) e. RR ) |
| 120 | 116 119 | eqeltrrd | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( vol* ` ( `' G " { z } ) ) e. RR ) |
| 121 | ovolsscl | |- ( ( ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) C_ ( `' G " { z } ) /\ ( `' G " { z } ) C_ RR /\ ( vol* ` ( `' G " { z } ) ) e. RR ) -> ( vol* ` ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) |
|
| 122 | 107 111 120 121 | mp3an2i | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( vol* ` ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) |
| 123 | 106 122 | sylan2br | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ ( z e. ran G /\ z =/= 0 ) ) -> ( vol* ` ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) |
| 124 | 123 | expr | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ z e. ran G ) -> ( z =/= 0 -> ( vol* ` ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) ) |
| 125 | 105 124 | pm2.61dne | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ z e. ran G ) -> ( vol* ` ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) |
| 126 | 52 125 | fsumrecl | |- ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) -> sum_ z e. ran G ( vol* ` ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) |
| 127 | 51 | fveq2d | |- ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) -> ( vol* ` ( `' ( F oF + G ) " { y } ) ) = ( vol* ` U_ z e. ran G ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) ) ) |
| 128 | 107 110 | sstrid | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ z e. ran G ) -> ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) C_ RR ) |
| 129 | 128 125 | jca | |- ( ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) /\ z e. ran G ) -> ( ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) C_ RR /\ ( vol* ` ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) ) |
| 130 | 129 | ralrimiva | |- ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) -> A. z e. ran G ( ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) C_ RR /\ ( vol* ` ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) ) |
| 131 | ovolfiniun | |- ( ( ran G e. Fin /\ A. z e. ran G ( ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) C_ RR /\ ( vol* ` ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) ) -> ( vol* ` U_ z e. ran G ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) ) <_ sum_ z e. ran G ( vol* ` ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) ) ) |
|
| 132 | 52 130 131 | syl2anc | |- ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) -> ( vol* ` U_ z e. ran G ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) ) <_ sum_ z e. ran G ( vol* ` ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) ) ) |
| 133 | 127 132 | eqbrtrd | |- ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) -> ( vol* ` ( `' ( F oF + G ) " { y } ) ) <_ sum_ z e. ran G ( vol* ` ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) ) ) |
| 134 | ovollecl | |- ( ( ( `' ( F oF + G ) " { y } ) C_ RR /\ sum_ z e. ran G ( vol* ` ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) ) e. RR /\ ( vol* ` ( `' ( F oF + G ) " { y } ) ) <_ sum_ z e. ran G ( vol* ` ( ( `' F " { ( y - z ) } ) i^i ( `' G " { z } ) ) ) ) -> ( vol* ` ( `' ( F oF + G ) " { y } ) ) e. RR ) |
|
| 135 | 83 126 133 134 | syl3anc | |- ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) -> ( vol* ` ( `' ( F oF + G ) " { y } ) ) e. RR ) |
| 136 | 81 135 | eqeltrd | |- ( ( ph /\ y e. ( ran ( F oF + G ) \ { 0 } ) ) -> ( vol ` ( `' ( F oF + G ) " { y } ) ) e. RR ) |
| 137 | 12 45 79 136 | i1fd | |- ( ph -> ( F oF + G ) e. dom S.1 ) |