This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for itg1add . The function I represents the pieces into which we will break up the domain of the sum. Since it is infinite only when both i and j are zero, we arbitrarily define it to be zero there to simplify the sums that are manipulated in itg1addlem4 and itg1addlem5 . (Contributed by Mario Carneiro, 26-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | i1fadd.1 | |- ( ph -> F e. dom S.1 ) |
|
| i1fadd.2 | |- ( ph -> G e. dom S.1 ) |
||
| itg1add.3 | |- I = ( i e. RR , j e. RR |-> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) ) |
||
| Assertion | itg1addlem2 | |- ( ph -> I : ( RR X. RR ) --> RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fadd.1 | |- ( ph -> F e. dom S.1 ) |
|
| 2 | i1fadd.2 | |- ( ph -> G e. dom S.1 ) |
|
| 3 | itg1add.3 | |- I = ( i e. RR , j e. RR |-> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) ) |
|
| 4 | iffalse | |- ( -. ( i = 0 /\ j = 0 ) -> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) = ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) |
|
| 5 | 4 | adantl | |- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ -. ( i = 0 /\ j = 0 ) ) -> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) = ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) |
| 6 | i1fima | |- ( F e. dom S.1 -> ( `' F " { i } ) e. dom vol ) |
|
| 7 | 1 6 | syl | |- ( ph -> ( `' F " { i } ) e. dom vol ) |
| 8 | i1fima | |- ( G e. dom S.1 -> ( `' G " { j } ) e. dom vol ) |
|
| 9 | 2 8 | syl | |- ( ph -> ( `' G " { j } ) e. dom vol ) |
| 10 | inmbl | |- ( ( ( `' F " { i } ) e. dom vol /\ ( `' G " { j } ) e. dom vol ) -> ( ( `' F " { i } ) i^i ( `' G " { j } ) ) e. dom vol ) |
|
| 11 | 7 9 10 | syl2anc | |- ( ph -> ( ( `' F " { i } ) i^i ( `' G " { j } ) ) e. dom vol ) |
| 12 | 11 | ad2antrr | |- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ -. ( i = 0 /\ j = 0 ) ) -> ( ( `' F " { i } ) i^i ( `' G " { j } ) ) e. dom vol ) |
| 13 | mblvol | |- ( ( ( `' F " { i } ) i^i ( `' G " { j } ) ) e. dom vol -> ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) = ( vol* ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) |
|
| 14 | 12 13 | syl | |- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ -. ( i = 0 /\ j = 0 ) ) -> ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) = ( vol* ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) |
| 15 | 5 14 | eqtrd | |- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ -. ( i = 0 /\ j = 0 ) ) -> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) = ( vol* ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) |
| 16 | neorian | |- ( ( i =/= 0 \/ j =/= 0 ) <-> -. ( i = 0 /\ j = 0 ) ) |
|
| 17 | inss1 | |- ( ( `' F " { i } ) i^i ( `' G " { j } ) ) C_ ( `' F " { i } ) |
|
| 18 | 7 | ad2antrr | |- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ i =/= 0 ) -> ( `' F " { i } ) e. dom vol ) |
| 19 | mblss | |- ( ( `' F " { i } ) e. dom vol -> ( `' F " { i } ) C_ RR ) |
|
| 20 | 18 19 | syl | |- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ i =/= 0 ) -> ( `' F " { i } ) C_ RR ) |
| 21 | mblvol | |- ( ( `' F " { i } ) e. dom vol -> ( vol ` ( `' F " { i } ) ) = ( vol* ` ( `' F " { i } ) ) ) |
|
| 22 | 18 21 | syl | |- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ i =/= 0 ) -> ( vol ` ( `' F " { i } ) ) = ( vol* ` ( `' F " { i } ) ) ) |
| 23 | 1 | ad2antrr | |- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ i =/= 0 ) -> F e. dom S.1 ) |
| 24 | simplrl | |- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ i =/= 0 ) -> i e. RR ) |
|
| 25 | simpr | |- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ i =/= 0 ) -> i =/= 0 ) |
|
| 26 | eldifsn | |- ( i e. ( RR \ { 0 } ) <-> ( i e. RR /\ i =/= 0 ) ) |
|
| 27 | 24 25 26 | sylanbrc | |- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ i =/= 0 ) -> i e. ( RR \ { 0 } ) ) |
| 28 | i1fima2sn | |- ( ( F e. dom S.1 /\ i e. ( RR \ { 0 } ) ) -> ( vol ` ( `' F " { i } ) ) e. RR ) |
|
| 29 | 23 27 28 | syl2anc | |- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ i =/= 0 ) -> ( vol ` ( `' F " { i } ) ) e. RR ) |
| 30 | 22 29 | eqeltrrd | |- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ i =/= 0 ) -> ( vol* ` ( `' F " { i } ) ) e. RR ) |
| 31 | ovolsscl | |- ( ( ( ( `' F " { i } ) i^i ( `' G " { j } ) ) C_ ( `' F " { i } ) /\ ( `' F " { i } ) C_ RR /\ ( vol* ` ( `' F " { i } ) ) e. RR ) -> ( vol* ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) e. RR ) |
|
| 32 | 17 20 30 31 | mp3an2i | |- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ i =/= 0 ) -> ( vol* ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) e. RR ) |
| 33 | inss2 | |- ( ( `' F " { i } ) i^i ( `' G " { j } ) ) C_ ( `' G " { j } ) |
|
| 34 | 2 | adantr | |- ( ( ph /\ ( i e. RR /\ j e. RR ) ) -> G e. dom S.1 ) |
| 35 | 34 8 | syl | |- ( ( ph /\ ( i e. RR /\ j e. RR ) ) -> ( `' G " { j } ) e. dom vol ) |
| 36 | 35 | adantr | |- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ j =/= 0 ) -> ( `' G " { j } ) e. dom vol ) |
| 37 | mblss | |- ( ( `' G " { j } ) e. dom vol -> ( `' G " { j } ) C_ RR ) |
|
| 38 | 36 37 | syl | |- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ j =/= 0 ) -> ( `' G " { j } ) C_ RR ) |
| 39 | mblvol | |- ( ( `' G " { j } ) e. dom vol -> ( vol ` ( `' G " { j } ) ) = ( vol* ` ( `' G " { j } ) ) ) |
|
| 40 | 36 39 | syl | |- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ j =/= 0 ) -> ( vol ` ( `' G " { j } ) ) = ( vol* ` ( `' G " { j } ) ) ) |
| 41 | 2 | ad2antrr | |- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ j =/= 0 ) -> G e. dom S.1 ) |
| 42 | simplrr | |- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ j =/= 0 ) -> j e. RR ) |
|
| 43 | simpr | |- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ j =/= 0 ) -> j =/= 0 ) |
|
| 44 | eldifsn | |- ( j e. ( RR \ { 0 } ) <-> ( j e. RR /\ j =/= 0 ) ) |
|
| 45 | 42 43 44 | sylanbrc | |- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ j =/= 0 ) -> j e. ( RR \ { 0 } ) ) |
| 46 | i1fima2sn | |- ( ( G e. dom S.1 /\ j e. ( RR \ { 0 } ) ) -> ( vol ` ( `' G " { j } ) ) e. RR ) |
|
| 47 | 41 45 46 | syl2anc | |- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ j =/= 0 ) -> ( vol ` ( `' G " { j } ) ) e. RR ) |
| 48 | 40 47 | eqeltrrd | |- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ j =/= 0 ) -> ( vol* ` ( `' G " { j } ) ) e. RR ) |
| 49 | ovolsscl | |- ( ( ( ( `' F " { i } ) i^i ( `' G " { j } ) ) C_ ( `' G " { j } ) /\ ( `' G " { j } ) C_ RR /\ ( vol* ` ( `' G " { j } ) ) e. RR ) -> ( vol* ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) e. RR ) |
|
| 50 | 33 38 48 49 | mp3an2i | |- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ j =/= 0 ) -> ( vol* ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) e. RR ) |
| 51 | 32 50 | jaodan | |- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ ( i =/= 0 \/ j =/= 0 ) ) -> ( vol* ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) e. RR ) |
| 52 | 16 51 | sylan2br | |- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ -. ( i = 0 /\ j = 0 ) ) -> ( vol* ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) e. RR ) |
| 53 | 15 52 | eqeltrd | |- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ -. ( i = 0 /\ j = 0 ) ) -> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) e. RR ) |
| 54 | 53 | ex | |- ( ( ph /\ ( i e. RR /\ j e. RR ) ) -> ( -. ( i = 0 /\ j = 0 ) -> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) e. RR ) ) |
| 55 | iftrue | |- ( ( i = 0 /\ j = 0 ) -> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) = 0 ) |
|
| 56 | 0re | |- 0 e. RR |
|
| 57 | 55 56 | eqeltrdi | |- ( ( i = 0 /\ j = 0 ) -> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) e. RR ) |
| 58 | 54 57 | pm2.61d2 | |- ( ( ph /\ ( i e. RR /\ j e. RR ) ) -> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) e. RR ) |
| 59 | 58 | ralrimivva | |- ( ph -> A. i e. RR A. j e. RR if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) e. RR ) |
| 60 | 3 | fmpo | |- ( A. i e. RR A. j e. RR if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) e. RR <-> I : ( RR X. RR ) --> RR ) |
| 61 | 59 60 | sylib | |- ( ph -> I : ( RR X. RR ) --> RR ) |