This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Cartesian product of two finite sets is finite. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 12-Mar-2015) Avoid ax-pow . (Revised by BTernaryTau, 10-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpfi | |- ( ( A e. Fin /\ B e. Fin ) -> ( A X. B ) e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unfi | |- ( ( A e. Fin /\ B e. Fin ) -> ( A u. B ) e. Fin ) |
|
| 2 | pwfi | |- ( ( A u. B ) e. Fin <-> ~P ( A u. B ) e. Fin ) |
|
| 3 | pwfi | |- ( ~P ( A u. B ) e. Fin <-> ~P ~P ( A u. B ) e. Fin ) |
|
| 4 | 2 3 | bitri | |- ( ( A u. B ) e. Fin <-> ~P ~P ( A u. B ) e. Fin ) |
| 5 | 1 4 | sylib | |- ( ( A e. Fin /\ B e. Fin ) -> ~P ~P ( A u. B ) e. Fin ) |
| 6 | xpsspw | |- ( A X. B ) C_ ~P ~P ( A u. B ) |
|
| 7 | ssfi | |- ( ( ~P ~P ( A u. B ) e. Fin /\ ( A X. B ) C_ ~P ~P ( A u. B ) ) -> ( A X. B ) e. Fin ) |
|
| 8 | 5 6 7 | sylancl | |- ( ( A e. Fin /\ B e. Fin ) -> ( A X. B ) e. Fin ) |