This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transitive closure of a class is transitive. (Contributed by Scott Fenton, 17-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ttrcltr | ⊢ ( t++ 𝑅 ∘ t++ 𝑅 ) ⊆ t++ 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco | ⊢ Rel ( t++ 𝑅 ∘ t++ 𝑅 ) | |
| 2 | eldifi | ⊢ ( 𝑛 ∈ ( ω ∖ 1o ) → 𝑛 ∈ ω ) | |
| 3 | eldifi | ⊢ ( 𝑚 ∈ ( ω ∖ 1o ) → 𝑚 ∈ ω ) | |
| 4 | nnacl | ⊢ ( ( 𝑛 ∈ ω ∧ 𝑚 ∈ ω ) → ( 𝑛 +o 𝑚 ) ∈ ω ) | |
| 5 | 2 3 4 | syl2an | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 𝑛 +o 𝑚 ) ∈ ω ) |
| 6 | eldif | ⊢ ( 𝑛 ∈ ( ω ∖ 1o ) ↔ ( 𝑛 ∈ ω ∧ ¬ 𝑛 ∈ 1o ) ) | |
| 7 | 1on | ⊢ 1o ∈ On | |
| 8 | 7 | onordi | ⊢ Ord 1o |
| 9 | nnord | ⊢ ( 𝑛 ∈ ω → Ord 𝑛 ) | |
| 10 | ordtri1 | ⊢ ( ( Ord 1o ∧ Ord 𝑛 ) → ( 1o ⊆ 𝑛 ↔ ¬ 𝑛 ∈ 1o ) ) | |
| 11 | 8 9 10 | sylancr | ⊢ ( 𝑛 ∈ ω → ( 1o ⊆ 𝑛 ↔ ¬ 𝑛 ∈ 1o ) ) |
| 12 | 11 | biimpar | ⊢ ( ( 𝑛 ∈ ω ∧ ¬ 𝑛 ∈ 1o ) → 1o ⊆ 𝑛 ) |
| 13 | 6 12 | sylbi | ⊢ ( 𝑛 ∈ ( ω ∖ 1o ) → 1o ⊆ 𝑛 ) |
| 14 | 13 | adantr | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → 1o ⊆ 𝑛 ) |
| 15 | nnaword1 | ⊢ ( ( 𝑛 ∈ ω ∧ 𝑚 ∈ ω ) → 𝑛 ⊆ ( 𝑛 +o 𝑚 ) ) | |
| 16 | 2 3 15 | syl2an | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → 𝑛 ⊆ ( 𝑛 +o 𝑚 ) ) |
| 17 | 14 16 | sstrd | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → 1o ⊆ ( 𝑛 +o 𝑚 ) ) |
| 18 | nnord | ⊢ ( ( 𝑛 +o 𝑚 ) ∈ ω → Ord ( 𝑛 +o 𝑚 ) ) | |
| 19 | 5 18 | syl | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → Ord ( 𝑛 +o 𝑚 ) ) |
| 20 | ordtri1 | ⊢ ( ( Ord 1o ∧ Ord ( 𝑛 +o 𝑚 ) ) → ( 1o ⊆ ( 𝑛 +o 𝑚 ) ↔ ¬ ( 𝑛 +o 𝑚 ) ∈ 1o ) ) | |
| 21 | 8 19 20 | sylancr | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 1o ⊆ ( 𝑛 +o 𝑚 ) ↔ ¬ ( 𝑛 +o 𝑚 ) ∈ 1o ) ) |
| 22 | 17 21 | mpbid | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ¬ ( 𝑛 +o 𝑚 ) ∈ 1o ) |
| 23 | 5 22 | eldifd | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 𝑛 +o 𝑚 ) ∈ ( ω ∖ 1o ) ) |
| 24 | 0elsuc | ⊢ ( Ord ( 𝑛 +o 𝑚 ) → ∅ ∈ suc ( 𝑛 +o 𝑚 ) ) | |
| 25 | 19 24 | syl | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ∅ ∈ suc ( 𝑛 +o 𝑚 ) ) |
| 26 | eleq1 | ⊢ ( 𝑝 = ∅ → ( 𝑝 ∈ suc 𝑛 ↔ ∅ ∈ suc 𝑛 ) ) | |
| 27 | fveq2 | ⊢ ( 𝑝 = ∅ → ( 𝑓 ‘ 𝑝 ) = ( 𝑓 ‘ ∅ ) ) | |
| 28 | eqeq2 | ⊢ ( 𝑝 = ∅ → ( ( 𝑛 +o 𝑞 ) = 𝑝 ↔ ( 𝑛 +o 𝑞 ) = ∅ ) ) | |
| 29 | 28 | riotabidv | ⊢ ( 𝑝 = ∅ → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) |
| 30 | 29 | fveq2d | ⊢ ( 𝑝 = ∅ → ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) = ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) ) |
| 31 | 26 27 30 | ifbieq12d | ⊢ ( 𝑝 = ∅ → if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) = if ( ∅ ∈ suc 𝑛 , ( 𝑓 ‘ ∅ ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) ) ) |
| 32 | eqid | ⊢ ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) | |
| 33 | fvex | ⊢ ( 𝑓 ‘ ∅ ) ∈ V | |
| 34 | fvex | ⊢ ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) ∈ V | |
| 35 | 33 34 | ifex | ⊢ if ( ∅ ∈ suc 𝑛 , ( 𝑓 ‘ ∅ ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) ) ∈ V |
| 36 | 31 32 35 | fvmpt | ⊢ ( ∅ ∈ suc ( 𝑛 +o 𝑚 ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = if ( ∅ ∈ suc 𝑛 , ( 𝑓 ‘ ∅ ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) ) ) |
| 37 | 25 36 | syl | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = if ( ∅ ∈ suc 𝑛 , ( 𝑓 ‘ ∅ ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) ) ) |
| 38 | 2 | adantr | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → 𝑛 ∈ ω ) |
| 39 | 38 9 | syl | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → Ord 𝑛 ) |
| 40 | 0elsuc | ⊢ ( Ord 𝑛 → ∅ ∈ suc 𝑛 ) | |
| 41 | 39 40 | syl | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ∅ ∈ suc 𝑛 ) |
| 42 | 41 | iftrued | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → if ( ∅ ∈ suc 𝑛 , ( 𝑓 ‘ ∅ ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ∅ ) ) ) = ( 𝑓 ‘ ∅ ) ) |
| 43 | 37 42 | eqtrd | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = ( 𝑓 ‘ ∅ ) ) |
| 44 | simpl2l | ⊢ ( ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ( 𝑓 ‘ ∅ ) = 𝑥 ) | |
| 45 | 43 44 | sylan9eq | ⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = 𝑥 ) |
| 46 | ovex | ⊢ ( 𝑛 +o 𝑚 ) ∈ V | |
| 47 | 46 | sucid | ⊢ ( 𝑛 +o 𝑚 ) ∈ suc ( 𝑛 +o 𝑚 ) |
| 48 | eleq1 | ⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( 𝑝 ∈ suc 𝑛 ↔ ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 ) ) | |
| 49 | fveq2 | ⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( 𝑓 ‘ 𝑝 ) = ( 𝑓 ‘ ( 𝑛 +o 𝑚 ) ) ) | |
| 50 | eqeq2 | ⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ( 𝑛 +o 𝑞 ) = 𝑝 ↔ ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) | |
| 51 | 50 | riotabidv | ⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) |
| 52 | 51 | fveq2d | ⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) = ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ) |
| 53 | 48 49 52 | ifbieq12d | ⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) = if ( ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 , ( 𝑓 ‘ ( 𝑛 +o 𝑚 ) ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ) ) |
| 54 | fvex | ⊢ ( 𝑓 ‘ ( 𝑛 +o 𝑚 ) ) ∈ V | |
| 55 | fvex | ⊢ ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ∈ V | |
| 56 | 54 55 | ifex | ⊢ if ( ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 , ( 𝑓 ‘ ( 𝑛 +o 𝑚 ) ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ) ∈ V |
| 57 | 53 32 56 | fvmpt | ⊢ ( ( 𝑛 +o 𝑚 ) ∈ suc ( 𝑛 +o 𝑚 ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = if ( ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 , ( 𝑓 ‘ ( 𝑛 +o 𝑚 ) ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ) ) |
| 58 | 47 57 | mp1i | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = if ( ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 , ( 𝑓 ‘ ( 𝑛 +o 𝑚 ) ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ) ) |
| 59 | df-1o | ⊢ 1o = suc ∅ | |
| 60 | 59 | difeq2i | ⊢ ( ω ∖ 1o ) = ( ω ∖ suc ∅ ) |
| 61 | 60 | eleq2i | ⊢ ( 𝑛 ∈ ( ω ∖ 1o ) ↔ 𝑛 ∈ ( ω ∖ suc ∅ ) ) |
| 62 | peano1 | ⊢ ∅ ∈ ω | |
| 63 | eldifsucnn | ⊢ ( ∅ ∈ ω → ( 𝑛 ∈ ( ω ∖ suc ∅ ) ↔ ∃ 𝑥 ∈ ( ω ∖ ∅ ) 𝑛 = suc 𝑥 ) ) | |
| 64 | 62 63 | ax-mp | ⊢ ( 𝑛 ∈ ( ω ∖ suc ∅ ) ↔ ∃ 𝑥 ∈ ( ω ∖ ∅ ) 𝑛 = suc 𝑥 ) |
| 65 | dif0 | ⊢ ( ω ∖ ∅ ) = ω | |
| 66 | 65 | rexeqi | ⊢ ( ∃ 𝑥 ∈ ( ω ∖ ∅ ) 𝑛 = suc 𝑥 ↔ ∃ 𝑥 ∈ ω 𝑛 = suc 𝑥 ) |
| 67 | 61 64 66 | 3bitri | ⊢ ( 𝑛 ∈ ( ω ∖ 1o ) ↔ ∃ 𝑥 ∈ ω 𝑛 = suc 𝑥 ) |
| 68 | 60 | eleq2i | ⊢ ( 𝑚 ∈ ( ω ∖ 1o ) ↔ 𝑚 ∈ ( ω ∖ suc ∅ ) ) |
| 69 | eldifsucnn | ⊢ ( ∅ ∈ ω → ( 𝑚 ∈ ( ω ∖ suc ∅ ) ↔ ∃ 𝑦 ∈ ( ω ∖ ∅ ) 𝑚 = suc 𝑦 ) ) | |
| 70 | 62 69 | ax-mp | ⊢ ( 𝑚 ∈ ( ω ∖ suc ∅ ) ↔ ∃ 𝑦 ∈ ( ω ∖ ∅ ) 𝑚 = suc 𝑦 ) |
| 71 | 65 | rexeqi | ⊢ ( ∃ 𝑦 ∈ ( ω ∖ ∅ ) 𝑚 = suc 𝑦 ↔ ∃ 𝑦 ∈ ω 𝑚 = suc 𝑦 ) |
| 72 | 68 70 71 | 3bitri | ⊢ ( 𝑚 ∈ ( ω ∖ 1o ) ↔ ∃ 𝑦 ∈ ω 𝑚 = suc 𝑦 ) |
| 73 | 67 72 | anbi12i | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ↔ ( ∃ 𝑥 ∈ ω 𝑛 = suc 𝑥 ∧ ∃ 𝑦 ∈ ω 𝑚 = suc 𝑦 ) ) |
| 74 | reeanv | ⊢ ( ∃ 𝑥 ∈ ω ∃ 𝑦 ∈ ω ( 𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦 ) ↔ ( ∃ 𝑥 ∈ ω 𝑛 = suc 𝑥 ∧ ∃ 𝑦 ∈ ω 𝑚 = suc 𝑦 ) ) | |
| 75 | 73 74 | bitr4i | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ↔ ∃ 𝑥 ∈ ω ∃ 𝑦 ∈ ω ( 𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦 ) ) |
| 76 | peano2 | ⊢ ( 𝑥 ∈ ω → suc 𝑥 ∈ ω ) | |
| 77 | nnaword1 | ⊢ ( ( suc 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → suc 𝑥 ⊆ ( suc 𝑥 +o 𝑦 ) ) | |
| 78 | 76 77 | sylan | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → suc 𝑥 ⊆ ( suc 𝑥 +o 𝑦 ) ) |
| 79 | 76 | adantr | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → suc 𝑥 ∈ ω ) |
| 80 | nnord | ⊢ ( suc 𝑥 ∈ ω → Ord suc 𝑥 ) | |
| 81 | 79 80 | syl | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → Ord suc 𝑥 ) |
| 82 | nnacl | ⊢ ( ( suc 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝑥 +o 𝑦 ) ∈ ω ) | |
| 83 | 76 82 | sylan | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝑥 +o 𝑦 ) ∈ ω ) |
| 84 | nnord | ⊢ ( ( suc 𝑥 +o 𝑦 ) ∈ ω → Ord ( suc 𝑥 +o 𝑦 ) ) | |
| 85 | 83 84 | syl | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → Ord ( suc 𝑥 +o 𝑦 ) ) |
| 86 | ordsucsssuc | ⊢ ( ( Ord suc 𝑥 ∧ Ord ( suc 𝑥 +o 𝑦 ) ) → ( suc 𝑥 ⊆ ( suc 𝑥 +o 𝑦 ) ↔ suc suc 𝑥 ⊆ suc ( suc 𝑥 +o 𝑦 ) ) ) | |
| 87 | 81 85 86 | syl2anc | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝑥 ⊆ ( suc 𝑥 +o 𝑦 ) ↔ suc suc 𝑥 ⊆ suc ( suc 𝑥 +o 𝑦 ) ) ) |
| 88 | 78 87 | mpbid | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → suc suc 𝑥 ⊆ suc ( suc 𝑥 +o 𝑦 ) ) |
| 89 | nnasuc | ⊢ ( ( suc 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝑥 +o suc 𝑦 ) = suc ( suc 𝑥 +o 𝑦 ) ) | |
| 90 | 76 89 | sylan | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝑥 +o suc 𝑦 ) = suc ( suc 𝑥 +o 𝑦 ) ) |
| 91 | 88 90 | sseqtrrd | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → suc suc 𝑥 ⊆ ( suc 𝑥 +o suc 𝑦 ) ) |
| 92 | peano2 | ⊢ ( suc 𝑥 ∈ ω → suc suc 𝑥 ∈ ω ) | |
| 93 | 79 92 | syl | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → suc suc 𝑥 ∈ ω ) |
| 94 | nnord | ⊢ ( suc suc 𝑥 ∈ ω → Ord suc suc 𝑥 ) | |
| 95 | 93 94 | syl | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → Ord suc suc 𝑥 ) |
| 96 | peano2 | ⊢ ( 𝑦 ∈ ω → suc 𝑦 ∈ ω ) | |
| 97 | nnacl | ⊢ ( ( suc 𝑥 ∈ ω ∧ suc 𝑦 ∈ ω ) → ( suc 𝑥 +o suc 𝑦 ) ∈ ω ) | |
| 98 | 76 96 97 | syl2an | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝑥 +o suc 𝑦 ) ∈ ω ) |
| 99 | nnord | ⊢ ( ( suc 𝑥 +o suc 𝑦 ) ∈ ω → Ord ( suc 𝑥 +o suc 𝑦 ) ) | |
| 100 | 98 99 | syl | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → Ord ( suc 𝑥 +o suc 𝑦 ) ) |
| 101 | ordtri1 | ⊢ ( ( Ord suc suc 𝑥 ∧ Ord ( suc 𝑥 +o suc 𝑦 ) ) → ( suc suc 𝑥 ⊆ ( suc 𝑥 +o suc 𝑦 ) ↔ ¬ ( suc 𝑥 +o suc 𝑦 ) ∈ suc suc 𝑥 ) ) | |
| 102 | 95 100 101 | syl2anc | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc suc 𝑥 ⊆ ( suc 𝑥 +o suc 𝑦 ) ↔ ¬ ( suc 𝑥 +o suc 𝑦 ) ∈ suc suc 𝑥 ) ) |
| 103 | 91 102 | mpbid | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ¬ ( suc 𝑥 +o suc 𝑦 ) ∈ suc suc 𝑥 ) |
| 104 | oveq12 | ⊢ ( ( 𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦 ) → ( 𝑛 +o 𝑚 ) = ( suc 𝑥 +o suc 𝑦 ) ) | |
| 105 | suceq | ⊢ ( 𝑛 = suc 𝑥 → suc 𝑛 = suc suc 𝑥 ) | |
| 106 | 105 | adantr | ⊢ ( ( 𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦 ) → suc 𝑛 = suc suc 𝑥 ) |
| 107 | 104 106 | eleq12d | ⊢ ( ( 𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦 ) → ( ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 ↔ ( suc 𝑥 +o suc 𝑦 ) ∈ suc suc 𝑥 ) ) |
| 108 | 107 | notbid | ⊢ ( ( 𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦 ) → ( ¬ ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 ↔ ¬ ( suc 𝑥 +o suc 𝑦 ) ∈ suc suc 𝑥 ) ) |
| 109 | 103 108 | syl5ibrcom | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦 ) → ¬ ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 ) ) |
| 110 | 109 | rexlimivv | ⊢ ( ∃ 𝑥 ∈ ω ∃ 𝑦 ∈ ω ( 𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦 ) → ¬ ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 ) |
| 111 | 75 110 | sylbi | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ¬ ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 ) |
| 112 | 111 | iffalsed | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → if ( ( 𝑛 +o 𝑚 ) ∈ suc 𝑛 , ( 𝑓 ‘ ( 𝑛 +o 𝑚 ) ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ) = ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) ) |
| 113 | 3 | adantl | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → 𝑚 ∈ ω ) |
| 114 | 38 | adantr | ⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ 𝑞 ∈ ω ) → 𝑛 ∈ ω ) |
| 115 | simpr | ⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ 𝑞 ∈ ω ) → 𝑞 ∈ ω ) | |
| 116 | 113 | adantr | ⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ 𝑞 ∈ ω ) → 𝑚 ∈ ω ) |
| 117 | nnacan | ⊢ ( ( 𝑛 ∈ ω ∧ 𝑞 ∈ ω ∧ 𝑚 ∈ ω ) → ( ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ↔ 𝑞 = 𝑚 ) ) | |
| 118 | 114 115 116 117 | syl3anc | ⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ 𝑞 ∈ ω ) → ( ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ↔ 𝑞 = 𝑚 ) ) |
| 119 | 113 118 | riota5 | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) = 𝑚 ) |
| 120 | 119 | fveq2d | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑚 ) ) ) = ( 𝑔 ‘ 𝑚 ) ) |
| 121 | 58 112 120 | 3eqtrd | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = ( 𝑔 ‘ 𝑚 ) ) |
| 122 | simpr2r | ⊢ ( ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ( 𝑔 ‘ 𝑚 ) = 𝑦 ) | |
| 123 | 121 122 | sylan9eq | ⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) |
| 124 | simprl3 | ⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) | |
| 125 | fveq2 | ⊢ ( 𝑎 = 𝑐 → ( 𝑓 ‘ 𝑎 ) = ( 𝑓 ‘ 𝑐 ) ) | |
| 126 | suceq | ⊢ ( 𝑎 = 𝑐 → suc 𝑎 = suc 𝑐 ) | |
| 127 | 126 | fveq2d | ⊢ ( 𝑎 = 𝑐 → ( 𝑓 ‘ suc 𝑎 ) = ( 𝑓 ‘ suc 𝑐 ) ) |
| 128 | 125 127 | breq12d | ⊢ ( 𝑎 = 𝑐 → ( ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ 𝑐 ) 𝑅 ( 𝑓 ‘ suc 𝑐 ) ) ) |
| 129 | 128 | rspcv | ⊢ ( 𝑐 ∈ 𝑛 → ( ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) → ( 𝑓 ‘ 𝑐 ) 𝑅 ( 𝑓 ‘ suc 𝑐 ) ) ) |
| 130 | 124 129 | mpan9 | ⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ 𝑛 ) → ( 𝑓 ‘ 𝑐 ) 𝑅 ( 𝑓 ‘ suc 𝑐 ) ) |
| 131 | elelsuc | ⊢ ( 𝑐 ∈ 𝑛 → 𝑐 ∈ suc 𝑛 ) | |
| 132 | 131 | adantl | ⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ 𝑛 ) → 𝑐 ∈ suc 𝑛 ) |
| 133 | 132 | iftrued | ⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ 𝑛 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) = ( 𝑓 ‘ 𝑐 ) ) |
| 134 | ordsucelsuc | ⊢ ( Ord 𝑛 → ( 𝑐 ∈ 𝑛 ↔ suc 𝑐 ∈ suc 𝑛 ) ) | |
| 135 | 39 134 | syl | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 𝑐 ∈ 𝑛 ↔ suc 𝑐 ∈ suc 𝑛 ) ) |
| 136 | 135 | adantr | ⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑐 ∈ 𝑛 ↔ suc 𝑐 ∈ suc 𝑛 ) ) |
| 137 | 136 | biimpa | ⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ 𝑛 ) → suc 𝑐 ∈ suc 𝑛 ) |
| 138 | 137 | iftrued | ⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ 𝑛 ) → if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) = ( 𝑓 ‘ suc 𝑐 ) ) |
| 139 | 130 133 138 | 3brtr4d | ⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ 𝑛 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
| 140 | 139 | adantlr | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑐 ∈ 𝑛 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
| 141 | 39 | adantr | ⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → Ord 𝑛 ) |
| 142 | 5 | adantr | ⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑛 +o 𝑚 ) ∈ ω ) |
| 143 | elnn | ⊢ ( ( 𝑐 ∈ ( 𝑛 +o 𝑚 ) ∧ ( 𝑛 +o 𝑚 ) ∈ ω ) → 𝑐 ∈ ω ) | |
| 144 | 143 | ancoms | ⊢ ( ( ( 𝑛 +o 𝑚 ) ∈ ω ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → 𝑐 ∈ ω ) |
| 145 | 142 144 | sylan | ⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → 𝑐 ∈ ω ) |
| 146 | nnord | ⊢ ( 𝑐 ∈ ω → Ord 𝑐 ) | |
| 147 | 145 146 | syl | ⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → Ord 𝑐 ) |
| 148 | ordtri3or | ⊢ ( ( Ord 𝑛 ∧ Ord 𝑐 ) → ( 𝑛 ∈ 𝑐 ∨ 𝑛 = 𝑐 ∨ 𝑐 ∈ 𝑛 ) ) | |
| 149 | 141 147 148 | syl2an2r | ⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( 𝑛 ∈ 𝑐 ∨ 𝑛 = 𝑐 ∨ 𝑐 ∈ 𝑛 ) ) |
| 150 | 3orel3 | ⊢ ( ¬ 𝑐 ∈ 𝑛 → ( ( 𝑛 ∈ 𝑐 ∨ 𝑛 = 𝑐 ∨ 𝑐 ∈ 𝑛 ) → ( 𝑛 ∈ 𝑐 ∨ 𝑛 = 𝑐 ) ) ) | |
| 151 | 149 150 | syl5com | ⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( ¬ 𝑐 ∈ 𝑛 → ( 𝑛 ∈ 𝑐 ∨ 𝑛 = 𝑐 ) ) ) |
| 152 | fveq2 | ⊢ ( 𝑏 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( 𝑔 ‘ 𝑏 ) = ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) | |
| 153 | suceq | ⊢ ( 𝑏 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → suc 𝑏 = suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) | |
| 154 | 153 | fveq2d | ⊢ ( 𝑏 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( 𝑔 ‘ suc 𝑏 ) = ( 𝑔 ‘ suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
| 155 | 152 154 | breq12d | ⊢ ( 𝑏 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ↔ ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) 𝑅 ( 𝑔 ‘ suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) ) |
| 156 | simprr3 | ⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) | |
| 157 | 156 | adantr | ⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) |
| 158 | 157 | adantr | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) |
| 159 | ordelss | ⊢ ( ( Ord 𝑐 ∧ 𝑛 ∈ 𝑐 ) → 𝑛 ⊆ 𝑐 ) | |
| 160 | 147 159 | sylan | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → 𝑛 ⊆ 𝑐 ) |
| 161 | 38 | adantr | ⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → 𝑛 ∈ ω ) |
| 162 | 161 | adantr | ⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → 𝑛 ∈ ω ) |
| 163 | 145 | adantr | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → 𝑐 ∈ ω ) |
| 164 | nnawordex | ⊢ ( ( 𝑛 ∈ ω ∧ 𝑐 ∈ ω ) → ( 𝑛 ⊆ 𝑐 ↔ ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) | |
| 165 | 162 163 164 | syl2an2r | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( 𝑛 ⊆ 𝑐 ↔ ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
| 166 | 160 165 | mpbid | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) |
| 167 | oveq2 | ⊢ ( 𝑞 = 𝑝 → ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 𝑝 ) ) | |
| 168 | 167 | eqeq1d | ⊢ ( 𝑞 = 𝑝 → ( ( 𝑛 +o 𝑞 ) = 𝑐 ↔ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) |
| 169 | 168 | cbvrexvw | ⊢ ( ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ↔ ∃ 𝑝 ∈ ω ( 𝑛 +o 𝑝 ) = 𝑐 ) |
| 170 | 166 169 | sylib | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∃ 𝑝 ∈ ω ( 𝑛 +o 𝑝 ) = 𝑐 ) |
| 171 | simprr | ⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → ( 𝑛 +o 𝑝 ) = 𝑐 ) | |
| 172 | simpllr | ⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) | |
| 173 | 171 172 | eqeltrd | ⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → ( 𝑛 +o 𝑝 ) ∈ ( 𝑛 +o 𝑚 ) ) |
| 174 | simprl | ⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → 𝑝 ∈ ω ) | |
| 175 | 3 | ad4antlr | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → 𝑚 ∈ ω ) |
| 176 | 175 | adantr | ⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → 𝑚 ∈ ω ) |
| 177 | 162 | adantr | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → 𝑛 ∈ ω ) |
| 178 | 177 | adantr | ⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → 𝑛 ∈ ω ) |
| 179 | nnaord | ⊢ ( ( 𝑝 ∈ ω ∧ 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) → ( 𝑝 ∈ 𝑚 ↔ ( 𝑛 +o 𝑝 ) ∈ ( 𝑛 +o 𝑚 ) ) ) | |
| 180 | 174 176 178 179 | syl3anc | ⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → ( 𝑝 ∈ 𝑚 ↔ ( 𝑛 +o 𝑝 ) ∈ ( 𝑛 +o 𝑚 ) ) ) |
| 181 | 173 180 | mpbird | ⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ ( 𝑝 ∈ ω ∧ ( 𝑛 +o 𝑝 ) = 𝑐 ) ) → 𝑝 ∈ 𝑚 ) |
| 182 | 170 181 171 | reximssdv | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∃ 𝑝 ∈ 𝑚 ( 𝑛 +o 𝑝 ) = 𝑐 ) |
| 183 | elnn | ⊢ ( ( 𝑝 ∈ 𝑚 ∧ 𝑚 ∈ ω ) → 𝑝 ∈ ω ) | |
| 184 | 183 | ancoms | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) → 𝑝 ∈ ω ) |
| 185 | 175 184 | sylan | ⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ 𝑝 ∈ 𝑚 ) → 𝑝 ∈ ω ) |
| 186 | nnasmo | ⊢ ( 𝑛 ∈ ω → ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) | |
| 187 | 177 186 | syl | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) |
| 188 | reu5 | ⊢ ( ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ↔ ( ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ∧ ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) | |
| 189 | 166 187 188 | sylanbrc | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) |
| 190 | 189 | adantr | ⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ 𝑝 ∈ 𝑚 ) → ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) |
| 191 | 168 | riota2 | ⊢ ( ( 𝑝 ∈ ω ∧ ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( ( 𝑛 +o 𝑝 ) = 𝑐 ↔ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) = 𝑝 ) ) |
| 192 | 185 190 191 | syl2anc | ⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ 𝑝 ∈ 𝑚 ) → ( ( 𝑛 +o 𝑝 ) = 𝑐 ↔ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) = 𝑝 ) ) |
| 193 | eqcom | ⊢ ( ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) = 𝑝 ↔ 𝑝 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) | |
| 194 | 192 193 | bitrdi | ⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ 𝑝 ∈ 𝑚 ) → ( ( 𝑛 +o 𝑝 ) = 𝑐 ↔ 𝑝 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
| 195 | 194 | rexbidva | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( ∃ 𝑝 ∈ 𝑚 ( 𝑛 +o 𝑝 ) = 𝑐 ↔ ∃ 𝑝 ∈ 𝑚 𝑝 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
| 196 | 182 195 | mpbid | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∃ 𝑝 ∈ 𝑚 𝑝 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
| 197 | risset | ⊢ ( ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ 𝑚 ↔ ∃ 𝑝 ∈ 𝑚 𝑝 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) | |
| 198 | 196 197 | sylibr | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ 𝑚 ) |
| 199 | 155 158 198 | rspcdva | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) 𝑅 ( 𝑔 ‘ suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
| 200 | simpr | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → 𝑛 ∈ 𝑐 ) | |
| 201 | vex | ⊢ 𝑛 ∈ V | |
| 202 | 147 | adantr | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → Ord 𝑐 ) |
| 203 | ordelsuc | ⊢ ( ( 𝑛 ∈ V ∧ Ord 𝑐 ) → ( 𝑛 ∈ 𝑐 ↔ suc 𝑛 ⊆ 𝑐 ) ) | |
| 204 | 201 202 203 | sylancr | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( 𝑛 ∈ 𝑐 ↔ suc 𝑛 ⊆ 𝑐 ) ) |
| 205 | peano2 | ⊢ ( 𝑛 ∈ ω → suc 𝑛 ∈ ω ) | |
| 206 | 38 205 | syl | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → suc 𝑛 ∈ ω ) |
| 207 | nnord | ⊢ ( suc 𝑛 ∈ ω → Ord suc 𝑛 ) | |
| 208 | 206 207 | syl | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → Ord suc 𝑛 ) |
| 209 | 208 | adantr | ⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → Ord suc 𝑛 ) |
| 210 | 209 | adantr | ⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → Ord suc 𝑛 ) |
| 211 | ordtri1 | ⊢ ( ( Ord suc 𝑛 ∧ Ord 𝑐 ) → ( suc 𝑛 ⊆ 𝑐 ↔ ¬ 𝑐 ∈ suc 𝑛 ) ) | |
| 212 | 210 202 211 | syl2an2r | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( suc 𝑛 ⊆ 𝑐 ↔ ¬ 𝑐 ∈ suc 𝑛 ) ) |
| 213 | 204 212 | bitrd | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( 𝑛 ∈ 𝑐 ↔ ¬ 𝑐 ∈ suc 𝑛 ) ) |
| 214 | 200 213 | mpbid | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ¬ 𝑐 ∈ suc 𝑛 ) |
| 215 | 214 | iffalsed | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) = ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
| 216 | riotacl | ⊢ ( ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω ) | |
| 217 | 189 216 | syl | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω ) |
| 218 | nnasuc | ⊢ ( ( 𝑛 ∈ ω ∧ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω ) → ( 𝑛 +o suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) | |
| 219 | 162 217 218 | syl2an2r | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( 𝑛 +o suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
| 220 | eqidd | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) | |
| 221 | nfriota1 | ⊢ Ⅎ 𝑞 ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) | |
| 222 | nfcv | ⊢ Ⅎ 𝑞 𝑛 | |
| 223 | nfcv | ⊢ Ⅎ 𝑞 +o | |
| 224 | 222 223 221 | nfov | ⊢ Ⅎ 𝑞 ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
| 225 | 224 | nfeq1 | ⊢ Ⅎ 𝑞 ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = 𝑐 |
| 226 | oveq2 | ⊢ ( 𝑞 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( 𝑛 +o 𝑞 ) = ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) | |
| 227 | 226 | eqeq1d | ⊢ ( 𝑞 = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( ( 𝑛 +o 𝑞 ) = 𝑐 ↔ ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = 𝑐 ) ) |
| 228 | 221 225 227 | riota2f | ⊢ ( ( ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω ∧ ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = 𝑐 ↔ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
| 229 | 217 189 228 | syl2anc | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = 𝑐 ↔ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
| 230 | 220 229 | mpbird | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = 𝑐 ) |
| 231 | suceq | ⊢ ( ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = 𝑐 → suc ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc 𝑐 ) | |
| 232 | 230 231 | syl | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → suc ( 𝑛 +o ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc 𝑐 ) |
| 233 | 219 232 | eqtrd | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( 𝑛 +o suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc 𝑐 ) |
| 234 | peano2 | ⊢ ( ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω → suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω ) | |
| 235 | 217 234 | syl | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω ) |
| 236 | peano2 | ⊢ ( 𝑝 ∈ ω → suc 𝑝 ∈ ω ) | |
| 237 | nnasuc | ⊢ ( ( 𝑛 ∈ ω ∧ 𝑝 ∈ ω ) → ( 𝑛 +o suc 𝑝 ) = suc ( 𝑛 +o 𝑝 ) ) | |
| 238 | 177 237 | sylan | ⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ 𝑝 ∈ ω ) → ( 𝑛 +o suc 𝑝 ) = suc ( 𝑛 +o 𝑝 ) ) |
| 239 | oveq2 | ⊢ ( 𝑞 = suc 𝑝 → ( 𝑛 +o 𝑞 ) = ( 𝑛 +o suc 𝑝 ) ) | |
| 240 | 239 | eqeq1d | ⊢ ( 𝑞 = suc 𝑝 → ( ( 𝑛 +o 𝑞 ) = suc ( 𝑛 +o 𝑝 ) ↔ ( 𝑛 +o suc 𝑝 ) = suc ( 𝑛 +o 𝑝 ) ) ) |
| 241 | 240 | rspcev | ⊢ ( ( suc 𝑝 ∈ ω ∧ ( 𝑛 +o suc 𝑝 ) = suc ( 𝑛 +o 𝑝 ) ) → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc ( 𝑛 +o 𝑝 ) ) |
| 242 | 236 238 241 | syl2an2 | ⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ 𝑝 ∈ ω ) → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc ( 𝑛 +o 𝑝 ) ) |
| 243 | suceq | ⊢ ( ( 𝑛 +o 𝑝 ) = 𝑐 → suc ( 𝑛 +o 𝑝 ) = suc 𝑐 ) | |
| 244 | 243 | eqeq2d | ⊢ ( ( 𝑛 +o 𝑝 ) = 𝑐 → ( ( 𝑛 +o 𝑞 ) = suc ( 𝑛 +o 𝑝 ) ↔ ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) |
| 245 | 244 | rexbidv | ⊢ ( ( 𝑛 +o 𝑝 ) = 𝑐 → ( ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc ( 𝑛 +o 𝑝 ) ↔ ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) |
| 246 | 242 245 | syl5ibcom | ⊢ ( ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) ∧ 𝑝 ∈ ω ) → ( ( 𝑛 +o 𝑝 ) = 𝑐 → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) |
| 247 | 246 | rexlimdva | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( ∃ 𝑝 ∈ ω ( 𝑛 +o 𝑝 ) = 𝑐 → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) |
| 248 | 170 247 | mpd | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) |
| 249 | nnasmo | ⊢ ( 𝑛 ∈ ω → ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) | |
| 250 | 177 249 | syl | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) |
| 251 | reu5 | ⊢ ( ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ↔ ( ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ∧ ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) | |
| 252 | 248 250 251 | sylanbrc | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) |
| 253 | 221 | nfsuc | ⊢ Ⅎ 𝑞 suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) |
| 254 | 222 223 253 | nfov | ⊢ Ⅎ 𝑞 ( 𝑛 +o suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
| 255 | 254 | nfeq1 | ⊢ Ⅎ 𝑞 ( 𝑛 +o suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc 𝑐 |
| 256 | oveq2 | ⊢ ( 𝑞 = suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( 𝑛 +o 𝑞 ) = ( 𝑛 +o suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) | |
| 257 | 256 | eqeq1d | ⊢ ( 𝑞 = suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) → ( ( 𝑛 +o 𝑞 ) = suc 𝑐 ↔ ( 𝑛 +o suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc 𝑐 ) ) |
| 258 | 253 255 257 | riota2f | ⊢ ( ( suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ∈ ω ∧ ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) → ( ( 𝑛 +o suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc 𝑐 ↔ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) = suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
| 259 | 235 252 258 | syl2anc | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( ( 𝑛 +o suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) = suc 𝑐 ↔ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) = suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
| 260 | 233 259 | mpbid | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) = suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
| 261 | 260 | fveq2d | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) = ( 𝑔 ‘ suc ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
| 262 | 199 215 261 | 3brtr4d | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ 𝑛 ∈ 𝑐 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) |
| 263 | 262 | ex | ⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( 𝑛 ∈ 𝑐 → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
| 264 | fveq2 | ⊢ ( 𝑏 = ∅ → ( 𝑔 ‘ 𝑏 ) = ( 𝑔 ‘ ∅ ) ) | |
| 265 | suceq | ⊢ ( 𝑏 = ∅ → suc 𝑏 = suc ∅ ) | |
| 266 | 265 59 | eqtr4di | ⊢ ( 𝑏 = ∅ → suc 𝑏 = 1o ) |
| 267 | 266 | fveq2d | ⊢ ( 𝑏 = ∅ → ( 𝑔 ‘ suc 𝑏 ) = ( 𝑔 ‘ 1o ) ) |
| 268 | 264 267 | breq12d | ⊢ ( 𝑏 = ∅ → ( ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ↔ ( 𝑔 ‘ ∅ ) 𝑅 ( 𝑔 ‘ 1o ) ) ) |
| 269 | eldif | ⊢ ( 𝑚 ∈ ( ω ∖ 1o ) ↔ ( 𝑚 ∈ ω ∧ ¬ 𝑚 ∈ 1o ) ) | |
| 270 | nnord | ⊢ ( 𝑚 ∈ ω → Ord 𝑚 ) | |
| 271 | ordtri1 | ⊢ ( ( Ord 1o ∧ Ord 𝑚 ) → ( 1o ⊆ 𝑚 ↔ ¬ 𝑚 ∈ 1o ) ) | |
| 272 | 8 270 271 | sylancr | ⊢ ( 𝑚 ∈ ω → ( 1o ⊆ 𝑚 ↔ ¬ 𝑚 ∈ 1o ) ) |
| 273 | 272 | biimpar | ⊢ ( ( 𝑚 ∈ ω ∧ ¬ 𝑚 ∈ 1o ) → 1o ⊆ 𝑚 ) |
| 274 | 269 273 | sylbi | ⊢ ( 𝑚 ∈ ( ω ∖ 1o ) → 1o ⊆ 𝑚 ) |
| 275 | 274 | adantl | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → 1o ⊆ 𝑚 ) |
| 276 | 59 275 | eqsstrrid | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → suc ∅ ⊆ 𝑚 ) |
| 277 | 0ex | ⊢ ∅ ∈ V | |
| 278 | 113 270 | syl | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → Ord 𝑚 ) |
| 279 | ordelsuc | ⊢ ( ( ∅ ∈ V ∧ Ord 𝑚 ) → ( ∅ ∈ 𝑚 ↔ suc ∅ ⊆ 𝑚 ) ) | |
| 280 | 277 278 279 | sylancr | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ∅ ∈ 𝑚 ↔ suc ∅ ⊆ 𝑚 ) ) |
| 281 | 276 280 | mpbird | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ∅ ∈ 𝑚 ) |
| 282 | 281 | adantr | ⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ∅ ∈ 𝑚 ) |
| 283 | 268 156 282 | rspcdva | ⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑔 ‘ ∅ ) 𝑅 ( 𝑔 ‘ 1o ) ) |
| 284 | simpl2r | ⊢ ( ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ( 𝑓 ‘ 𝑛 ) = 𝑧 ) | |
| 285 | simpr2l | ⊢ ( ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ( 𝑔 ‘ ∅ ) = 𝑧 ) | |
| 286 | 284 285 | eqtr4d | ⊢ ( ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ( 𝑓 ‘ 𝑛 ) = ( 𝑔 ‘ ∅ ) ) |
| 287 | 286 | adantl | ⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑓 ‘ 𝑛 ) = ( 𝑔 ‘ ∅ ) ) |
| 288 | nnon | ⊢ ( 𝑛 ∈ ω → 𝑛 ∈ On ) | |
| 289 | 38 288 | syl | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → 𝑛 ∈ On ) |
| 290 | oa1suc | ⊢ ( 𝑛 ∈ On → ( 𝑛 +o 1o ) = suc 𝑛 ) | |
| 291 | 289 290 | syl | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 𝑛 +o 1o ) = suc 𝑛 ) |
| 292 | 1onn | ⊢ 1o ∈ ω | |
| 293 | oveq2 | ⊢ ( 𝑞 = 1o → ( 𝑛 +o 𝑞 ) = ( 𝑛 +o 1o ) ) | |
| 294 | 293 | eqeq1d | ⊢ ( 𝑞 = 1o → ( ( 𝑛 +o 𝑞 ) = suc 𝑛 ↔ ( 𝑛 +o 1o ) = suc 𝑛 ) ) |
| 295 | 294 | rspcev | ⊢ ( ( 1o ∈ ω ∧ ( 𝑛 +o 1o ) = suc 𝑛 ) → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) |
| 296 | 292 291 295 | sylancr | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) |
| 297 | nnasmo | ⊢ ( 𝑛 ∈ ω → ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) | |
| 298 | 38 297 | syl | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) |
| 299 | reu5 | ⊢ ( ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ↔ ( ∃ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ∧ ∃* 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) ) | |
| 300 | 296 298 299 | sylanbrc | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) |
| 301 | 294 | riota2 | ⊢ ( ( 1o ∈ ω ∧ ∃! 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) → ( ( 𝑛 +o 1o ) = suc 𝑛 ↔ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) = 1o ) ) |
| 302 | 292 300 301 | sylancr | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ( 𝑛 +o 1o ) = suc 𝑛 ↔ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) = 1o ) ) |
| 303 | 291 302 | mpbid | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) = 1o ) |
| 304 | 303 | adantr | ⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) = 1o ) |
| 305 | 304 | fveq2d | ⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) ) = ( 𝑔 ‘ 1o ) ) |
| 306 | 283 287 305 | 3brtr4d | ⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑓 ‘ 𝑛 ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) ) ) |
| 307 | 201 | sucid | ⊢ 𝑛 ∈ suc 𝑛 |
| 308 | 307 | iftruei | ⊢ if ( 𝑛 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑛 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) = ( 𝑓 ‘ 𝑛 ) |
| 309 | eleq1 | ⊢ ( 𝑛 = 𝑐 → ( 𝑛 ∈ suc 𝑛 ↔ 𝑐 ∈ suc 𝑛 ) ) | |
| 310 | fveq2 | ⊢ ( 𝑛 = 𝑐 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑐 ) ) | |
| 311 | 309 310 | ifbieq1d | ⊢ ( 𝑛 = 𝑐 → if ( 𝑛 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑛 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) = if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) ) |
| 312 | 308 311 | eqtr3id | ⊢ ( 𝑛 = 𝑐 → ( 𝑓 ‘ 𝑛 ) = if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) ) |
| 313 | suceq | ⊢ ( 𝑛 = 𝑐 → suc 𝑛 = suc 𝑐 ) | |
| 314 | 313 | eqeq2d | ⊢ ( 𝑛 = 𝑐 → ( ( 𝑛 +o 𝑞 ) = suc 𝑛 ↔ ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) |
| 315 | 314 | riotabidv | ⊢ ( 𝑛 = 𝑐 → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) |
| 316 | 315 | fveq2d | ⊢ ( 𝑛 = 𝑐 → ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) ) = ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) |
| 317 | 312 316 | breq12d | ⊢ ( 𝑛 = 𝑐 → ( ( 𝑓 ‘ 𝑛 ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑛 ) ) ↔ if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
| 318 | 306 317 | syl5ibcom | ⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑛 = 𝑐 → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
| 319 | 318 | adantr | ⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( 𝑛 = 𝑐 → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
| 320 | 263 319 | jaod | ⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( ( 𝑛 ∈ 𝑐 ∨ 𝑛 = 𝑐 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
| 321 | 151 320 | syld | ⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( ¬ 𝑐 ∈ 𝑛 → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
| 322 | 321 | imp | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ ¬ 𝑐 ∈ 𝑛 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) |
| 323 | 135 | notbid | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ¬ 𝑐 ∈ 𝑛 ↔ ¬ suc 𝑐 ∈ suc 𝑛 ) ) |
| 324 | 323 | adantr | ⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( ¬ 𝑐 ∈ 𝑛 ↔ ¬ suc 𝑐 ∈ suc 𝑛 ) ) |
| 325 | 324 | adantr | ⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( ¬ 𝑐 ∈ 𝑛 ↔ ¬ suc 𝑐 ∈ suc 𝑛 ) ) |
| 326 | 325 | biimpa | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ ¬ 𝑐 ∈ 𝑛 ) → ¬ suc 𝑐 ∈ suc 𝑛 ) |
| 327 | 326 | iffalsed | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ ¬ 𝑐 ∈ 𝑛 ) → if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) = ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) |
| 328 | 322 327 | breqtrrd | ⊢ ( ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) ∧ ¬ 𝑐 ∈ 𝑛 ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
| 329 | 140 328 | pm2.61dan | ⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) 𝑅 if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
| 330 | elelsuc | ⊢ ( 𝑐 ∈ ( 𝑛 +o 𝑚 ) → 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) ) | |
| 331 | 330 | adantl | ⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) ) |
| 332 | eleq1 | ⊢ ( 𝑝 = 𝑐 → ( 𝑝 ∈ suc 𝑛 ↔ 𝑐 ∈ suc 𝑛 ) ) | |
| 333 | fveq2 | ⊢ ( 𝑝 = 𝑐 → ( 𝑓 ‘ 𝑝 ) = ( 𝑓 ‘ 𝑐 ) ) | |
| 334 | eqeq2 | ⊢ ( 𝑝 = 𝑐 → ( ( 𝑛 +o 𝑞 ) = 𝑝 ↔ ( 𝑛 +o 𝑞 ) = 𝑐 ) ) | |
| 335 | 334 | riotabidv | ⊢ ( 𝑝 = 𝑐 → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) |
| 336 | 335 | fveq2d | ⊢ ( 𝑝 = 𝑐 → ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) = ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) |
| 337 | 332 333 336 | ifbieq12d | ⊢ ( 𝑝 = 𝑐 → if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) = if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) ) |
| 338 | fvex | ⊢ ( 𝑓 ‘ 𝑐 ) ∈ V | |
| 339 | fvex | ⊢ ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ∈ V | |
| 340 | 338 339 | ifex | ⊢ if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) ∈ V |
| 341 | 337 32 340 | fvmpt | ⊢ ( 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) = if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) ) |
| 342 | 331 341 | syl | ⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) = if ( 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑐 ) ) ) ) |
| 343 | ordsucelsuc | ⊢ ( Ord ( 𝑛 +o 𝑚 ) → ( 𝑐 ∈ ( 𝑛 +o 𝑚 ) ↔ suc 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) ) ) | |
| 344 | 19 343 | syl | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( 𝑐 ∈ ( 𝑛 +o 𝑚 ) ↔ suc 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) ) ) |
| 345 | 344 | adantr | ⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ( 𝑐 ∈ ( 𝑛 +o 𝑚 ) ↔ suc 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) ) ) |
| 346 | 345 | biimpa | ⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → suc 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) ) |
| 347 | eleq1 | ⊢ ( 𝑝 = suc 𝑐 → ( 𝑝 ∈ suc 𝑛 ↔ suc 𝑐 ∈ suc 𝑛 ) ) | |
| 348 | fveq2 | ⊢ ( 𝑝 = suc 𝑐 → ( 𝑓 ‘ 𝑝 ) = ( 𝑓 ‘ suc 𝑐 ) ) | |
| 349 | eqeq2 | ⊢ ( 𝑝 = suc 𝑐 → ( ( 𝑛 +o 𝑞 ) = 𝑝 ↔ ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) | |
| 350 | 349 | riotabidv | ⊢ ( 𝑝 = suc 𝑐 → ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) = ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) |
| 351 | 350 | fveq2d | ⊢ ( 𝑝 = suc 𝑐 → ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) = ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) |
| 352 | 347 348 351 | ifbieq12d | ⊢ ( 𝑝 = suc 𝑐 → if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) = if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
| 353 | fvex | ⊢ ( 𝑓 ‘ suc 𝑐 ) ∈ V | |
| 354 | fvex | ⊢ ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ∈ V | |
| 355 | 353 354 | ifex | ⊢ if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ∈ V |
| 356 | 352 32 355 | fvmpt | ⊢ ( suc 𝑐 ∈ suc ( 𝑛 +o 𝑚 ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) = if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
| 357 | 346 356 | syl | ⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) = if ( suc 𝑐 ∈ suc 𝑛 , ( 𝑓 ‘ suc 𝑐 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = suc 𝑐 ) ) ) ) |
| 358 | 329 342 357 | 3brtr4d | ⊢ ( ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) ∧ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ) → ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) ) |
| 359 | 358 | ralrimiva | ⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) ) |
| 360 | fvex | ⊢ ( 𝑓 ‘ 𝑝 ) ∈ V | |
| 361 | fvex | ⊢ ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ∈ V | |
| 362 | 360 361 | ifex | ⊢ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ∈ V |
| 363 | 362 32 | fnmpti | ⊢ ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) Fn suc ( 𝑛 +o 𝑚 ) |
| 364 | 46 | sucex | ⊢ suc ( 𝑛 +o 𝑚 ) ∈ V |
| 365 | 364 | mptex | ⊢ ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ∈ V |
| 366 | fneq1 | ⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ℎ Fn suc ( 𝑛 +o 𝑚 ) ↔ ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) Fn suc ( 𝑛 +o 𝑚 ) ) ) | |
| 367 | fveq1 | ⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ℎ ‘ ∅ ) = ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) ) | |
| 368 | 367 | eqeq1d | ⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ( ℎ ‘ ∅ ) = 𝑥 ↔ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = 𝑥 ) ) |
| 369 | fveq1 | ⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) ) | |
| 370 | 369 | eqeq1d | ⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ↔ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ) |
| 371 | 368 370 | anbi12d | ⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ↔ ( ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = 𝑥 ∧ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ) ) |
| 372 | fveq1 | ⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ℎ ‘ 𝑐 ) = ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) ) | |
| 373 | fveq1 | ⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ℎ ‘ suc 𝑐 ) = ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) ) | |
| 374 | 372 373 | breq12d | ⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ↔ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) ) ) |
| 375 | 374 | ralbidv | ⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ↔ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) ) ) |
| 376 | 366 371 375 | 3anbi123d | ⊢ ( ℎ = ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) → ( ( ℎ Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ↔ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = 𝑥 ∧ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) ) ) ) |
| 377 | 365 376 | spcev | ⊢ ( ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = 𝑥 ∧ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) ) → ∃ ℎ ( ℎ Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) |
| 378 | 363 377 | mp3an1 | ⊢ ( ( ( ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ∅ ) = 𝑥 ∧ ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝 ∈ suc ( 𝑛 +o 𝑚 ) ↦ if ( 𝑝 ∈ suc 𝑛 , ( 𝑓 ‘ 𝑝 ) , ( 𝑔 ‘ ( ℩ 𝑞 ∈ ω ( 𝑛 +o 𝑞 ) = 𝑝 ) ) ) ) ‘ suc 𝑐 ) ) → ∃ ℎ ( ℎ Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) |
| 379 | 45 123 359 378 | syl21anc | ⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ∃ ℎ ( ℎ Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) |
| 380 | suceq | ⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → suc 𝑝 = suc ( 𝑛 +o 𝑚 ) ) | |
| 381 | 380 | fneq2d | ⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ℎ Fn suc 𝑝 ↔ ℎ Fn suc ( 𝑛 +o 𝑚 ) ) ) |
| 382 | fveqeq2 | ⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ( ℎ ‘ 𝑝 ) = 𝑦 ↔ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ) | |
| 383 | 382 | anbi2d | ⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ↔ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ) ) |
| 384 | raleq | ⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ↔ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) | |
| 385 | 381 383 384 | 3anbi123d | ⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ↔ ( ℎ Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) ) |
| 386 | 385 | exbidv | ⊢ ( 𝑝 = ( 𝑛 +o 𝑚 ) → ( ∃ ℎ ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ↔ ∃ ℎ ( ℎ Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) ) |
| 387 | 386 | rspcev | ⊢ ( ( ( 𝑛 +o 𝑚 ) ∈ ( ω ∖ 1o ) ∧ ∃ ℎ ( ℎ Fn suc ( 𝑛 +o 𝑚 ) ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ ( 𝑛 +o 𝑚 ) ) = 𝑦 ) ∧ ∀ 𝑐 ∈ ( 𝑛 +o 𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) → ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ℎ ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) |
| 388 | 23 379 387 | syl2an2r | ⊢ ( ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) ∧ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) → ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ℎ ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) |
| 389 | 388 | ex | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ℎ ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) ) |
| 390 | 389 | exlimdvv | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ 𝑚 ∈ ( ω ∖ 1o ) ) → ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ℎ ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) ) |
| 391 | 390 | rexlimivv | ⊢ ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ℎ ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) |
| 392 | 391 | exlimiv | ⊢ ( ∃ 𝑧 ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) → ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ℎ ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) |
| 393 | vex | ⊢ 𝑥 ∈ V | |
| 394 | vex | ⊢ 𝑦 ∈ V | |
| 395 | 393 394 | opelco | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( t++ 𝑅 ∘ t++ 𝑅 ) ↔ ∃ 𝑧 ( 𝑥 t++ 𝑅 𝑧 ∧ 𝑧 t++ 𝑅 𝑦 ) ) |
| 396 | reeanv | ⊢ ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ( ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ∃ 𝑔 ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ↔ ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑔 ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) | |
| 397 | eeanv | ⊢ ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ∃ 𝑔 ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) | |
| 398 | 397 | 2rexbii | ⊢ ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ↔ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ( ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ∃ 𝑔 ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
| 399 | brttrcl | ⊢ ( 𝑥 t++ 𝑅 𝑧 ↔ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) | |
| 400 | brttrcl | ⊢ ( 𝑧 t++ 𝑅 𝑦 ↔ ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑔 ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) | |
| 401 | 399 400 | anbi12i | ⊢ ( ( 𝑥 t++ 𝑅 𝑧 ∧ 𝑧 t++ 𝑅 𝑦 ) ↔ ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑔 ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
| 402 | 396 398 401 | 3bitr4ri | ⊢ ( ( 𝑥 t++ 𝑅 𝑧 ∧ 𝑧 t++ 𝑅 𝑦 ) ↔ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
| 403 | 402 | exbii | ⊢ ( ∃ 𝑧 ( 𝑥 t++ 𝑅 𝑧 ∧ 𝑧 t++ 𝑅 𝑦 ) ↔ ∃ 𝑧 ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
| 404 | 395 403 | bitri | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( t++ 𝑅 ∘ t++ 𝑅 ) ↔ ∃ 𝑧 ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ∧ ( 𝑔 Fn suc 𝑚 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ 𝑚 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ 𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
| 405 | df-br | ⊢ ( 𝑥 t++ 𝑅 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 ) | |
| 406 | brttrcl | ⊢ ( 𝑥 t++ 𝑅 𝑦 ↔ ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ℎ ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) | |
| 407 | 405 406 | bitr3i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 ↔ ∃ 𝑝 ∈ ( ω ∖ 1o ) ∃ ℎ ( ℎ Fn suc 𝑝 ∧ ( ( ℎ ‘ ∅ ) = 𝑥 ∧ ( ℎ ‘ 𝑝 ) = 𝑦 ) ∧ ∀ 𝑐 ∈ 𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc 𝑐 ) ) ) |
| 408 | 392 404 407 | 3imtr4i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( t++ 𝑅 ∘ t++ 𝑅 ) → 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 ) |
| 409 | 1 408 | relssi | ⊢ ( t++ 𝑅 ∘ t++ 𝑅 ) ⊆ t++ 𝑅 |