This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence for weak ordering of natural numbers. (Contributed by NM, 8-Nov-2002) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnawordex | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 +o 𝑦 ) = ( 𝐴 +o 𝐵 ) ) | |
| 2 | 1 | sseq2d | ⊢ ( 𝑦 = 𝐵 → ( 𝐵 ⊆ ( 𝐴 +o 𝑦 ) ↔ 𝐵 ⊆ ( 𝐴 +o 𝐵 ) ) ) |
| 3 | simplr | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐵 ∈ ω ) | |
| 4 | nnon | ⊢ ( 𝐵 ∈ ω → 𝐵 ∈ On ) | |
| 5 | 3 4 | syl | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐵 ∈ On ) |
| 6 | simpll | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ∈ ω ) | |
| 7 | nnaword2 | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → 𝐵 ⊆ ( 𝐴 +o 𝐵 ) ) | |
| 8 | 3 6 7 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐵 ⊆ ( 𝐴 +o 𝐵 ) ) |
| 9 | 2 5 8 | elrabd | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐵 ∈ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) |
| 10 | intss1 | ⊢ ( 𝐵 ∈ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } → ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ⊆ 𝐵 ) | |
| 11 | 9 10 | syl | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ⊆ 𝐵 ) |
| 12 | ssrab2 | ⊢ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ⊆ On | |
| 13 | 9 | ne0d | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ≠ ∅ ) |
| 14 | oninton | ⊢ ( ( { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ⊆ On ∧ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ≠ ∅ ) → ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ∈ On ) | |
| 15 | 12 13 14 | sylancr | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ∈ On ) |
| 16 | eloni | ⊢ ( ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ∈ On → Ord ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) | |
| 17 | 15 16 | syl | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → Ord ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) |
| 18 | ordom | ⊢ Ord ω | |
| 19 | ordtr2 | ⊢ ( ( Ord ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ∧ Ord ω ) → ( ( ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ⊆ 𝐵 ∧ 𝐵 ∈ ω ) → ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ∈ ω ) ) | |
| 20 | 17 18 19 | sylancl | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → ( ( ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ⊆ 𝐵 ∧ 𝐵 ∈ ω ) → ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ∈ ω ) ) |
| 21 | 11 3 20 | mp2and | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ∈ ω ) |
| 22 | nna0 | ⊢ ( 𝐴 ∈ ω → ( 𝐴 +o ∅ ) = 𝐴 ) | |
| 23 | 22 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 +o ∅ ) = 𝐴 ) |
| 24 | simpr | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ⊆ 𝐵 ) | |
| 25 | 23 24 | eqsstrd | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 +o ∅ ) ⊆ 𝐵 ) |
| 26 | oveq2 | ⊢ ( ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = ∅ → ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) = ( 𝐴 +o ∅ ) ) | |
| 27 | 26 | sseq1d | ⊢ ( ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = ∅ → ( ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) ⊆ 𝐵 ↔ ( 𝐴 +o ∅ ) ⊆ 𝐵 ) ) |
| 28 | 25 27 | syl5ibrcom | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → ( ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = ∅ → ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) ⊆ 𝐵 ) ) |
| 29 | simprr | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) | |
| 30 | 29 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) = ( 𝐴 +o suc 𝑥 ) ) |
| 31 | 6 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → 𝐴 ∈ ω ) |
| 32 | simprl | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → 𝑥 ∈ ω ) | |
| 33 | nnasuc | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( 𝐴 +o suc 𝑥 ) = suc ( 𝐴 +o 𝑥 ) ) | |
| 34 | 31 32 33 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → ( 𝐴 +o suc 𝑥 ) = suc ( 𝐴 +o 𝑥 ) ) |
| 35 | 30 34 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) = suc ( 𝐴 +o 𝑥 ) ) |
| 36 | nnord | ⊢ ( 𝐵 ∈ ω → Ord 𝐵 ) | |
| 37 | 3 36 | syl | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → Ord 𝐵 ) |
| 38 | 37 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → Ord 𝐵 ) |
| 39 | nnon | ⊢ ( 𝑥 ∈ ω → 𝑥 ∈ On ) | |
| 40 | 39 | adantr | ⊢ ( ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) → 𝑥 ∈ On ) |
| 41 | vex | ⊢ 𝑥 ∈ V | |
| 42 | 41 | sucid | ⊢ 𝑥 ∈ suc 𝑥 |
| 43 | simpr | ⊢ ( ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) → ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) | |
| 44 | 42 43 | eleqtrrid | ⊢ ( ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) → 𝑥 ∈ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) |
| 45 | oveq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝐴 +o 𝑦 ) = ( 𝐴 +o 𝑥 ) ) | |
| 46 | 45 | sseq2d | ⊢ ( 𝑦 = 𝑥 → ( 𝐵 ⊆ ( 𝐴 +o 𝑦 ) ↔ 𝐵 ⊆ ( 𝐴 +o 𝑥 ) ) ) |
| 47 | 46 | onnminsb | ⊢ ( 𝑥 ∈ On → ( 𝑥 ∈ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } → ¬ 𝐵 ⊆ ( 𝐴 +o 𝑥 ) ) ) |
| 48 | 40 44 47 | sylc | ⊢ ( ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) → ¬ 𝐵 ⊆ ( 𝐴 +o 𝑥 ) ) |
| 49 | 48 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → ¬ 𝐵 ⊆ ( 𝐴 +o 𝑥 ) ) |
| 50 | nnacl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( 𝐴 +o 𝑥 ) ∈ ω ) | |
| 51 | 31 32 50 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → ( 𝐴 +o 𝑥 ) ∈ ω ) |
| 52 | nnord | ⊢ ( ( 𝐴 +o 𝑥 ) ∈ ω → Ord ( 𝐴 +o 𝑥 ) ) | |
| 53 | 51 52 | syl | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → Ord ( 𝐴 +o 𝑥 ) ) |
| 54 | ordtri1 | ⊢ ( ( Ord 𝐵 ∧ Ord ( 𝐴 +o 𝑥 ) ) → ( 𝐵 ⊆ ( 𝐴 +o 𝑥 ) ↔ ¬ ( 𝐴 +o 𝑥 ) ∈ 𝐵 ) ) | |
| 55 | 38 53 54 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → ( 𝐵 ⊆ ( 𝐴 +o 𝑥 ) ↔ ¬ ( 𝐴 +o 𝑥 ) ∈ 𝐵 ) ) |
| 56 | 55 | con2bid | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → ( ( 𝐴 +o 𝑥 ) ∈ 𝐵 ↔ ¬ 𝐵 ⊆ ( 𝐴 +o 𝑥 ) ) ) |
| 57 | 49 56 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → ( 𝐴 +o 𝑥 ) ∈ 𝐵 ) |
| 58 | ordsucss | ⊢ ( Ord 𝐵 → ( ( 𝐴 +o 𝑥 ) ∈ 𝐵 → suc ( 𝐴 +o 𝑥 ) ⊆ 𝐵 ) ) | |
| 59 | 38 57 58 | sylc | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → suc ( 𝐴 +o 𝑥 ) ⊆ 𝐵 ) |
| 60 | 35 59 | eqsstrd | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ω ∧ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) → ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) ⊆ 𝐵 ) |
| 61 | 60 | rexlimdvaa | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → ( ∃ 𝑥 ∈ ω ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 → ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) ⊆ 𝐵 ) ) |
| 62 | nn0suc | ⊢ ( ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ∈ ω → ( ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = ∅ ∨ ∃ 𝑥 ∈ ω ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) | |
| 63 | 21 62 | syl | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → ( ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = ∅ ∨ ∃ 𝑥 ∈ ω ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } = suc 𝑥 ) ) |
| 64 | 28 61 63 | mpjaod | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) ⊆ 𝐵 ) |
| 65 | onint | ⊢ ( ( { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ⊆ On ∧ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ≠ ∅ ) → ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ∈ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) | |
| 66 | 12 13 65 | sylancr | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ∈ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) |
| 67 | nfrab1 | ⊢ Ⅎ 𝑦 { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } | |
| 68 | 67 | nfint | ⊢ Ⅎ 𝑦 ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } |
| 69 | nfcv | ⊢ Ⅎ 𝑦 On | |
| 70 | nfcv | ⊢ Ⅎ 𝑦 𝐵 | |
| 71 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 72 | nfcv | ⊢ Ⅎ 𝑦 +o | |
| 73 | 71 72 68 | nfov | ⊢ Ⅎ 𝑦 ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) |
| 74 | 70 73 | nfss | ⊢ Ⅎ 𝑦 𝐵 ⊆ ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) |
| 75 | oveq2 | ⊢ ( 𝑦 = ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } → ( 𝐴 +o 𝑦 ) = ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) ) | |
| 76 | 75 | sseq2d | ⊢ ( 𝑦 = ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } → ( 𝐵 ⊆ ( 𝐴 +o 𝑦 ) ↔ 𝐵 ⊆ ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) ) ) |
| 77 | 68 69 74 76 | elrabf | ⊢ ( ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ∈ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ↔ ( ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ∈ On ∧ 𝐵 ⊆ ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) ) ) |
| 78 | 77 | simprbi | ⊢ ( ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ∈ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } → 𝐵 ⊆ ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) ) |
| 79 | 66 78 | syl | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐵 ⊆ ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) ) |
| 80 | 64 79 | eqssd | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) = 𝐵 ) |
| 81 | oveq2 | ⊢ ( 𝑥 = ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) ) | |
| 82 | 81 | eqeq1d | ⊢ ( 𝑥 = ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } → ( ( 𝐴 +o 𝑥 ) = 𝐵 ↔ ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) = 𝐵 ) ) |
| 83 | 82 | rspcev | ⊢ ( ( ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ∈ ω ∧ ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) = 𝐵 ) → ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 ) |
| 84 | 21 80 83 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 ) |
| 85 | 84 | ex | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ⊆ 𝐵 → ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 ) ) |
| 86 | nnaword1 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → 𝐴 ⊆ ( 𝐴 +o 𝑥 ) ) | |
| 87 | 86 | adantlr | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝑥 ∈ ω ) → 𝐴 ⊆ ( 𝐴 +o 𝑥 ) ) |
| 88 | sseq2 | ⊢ ( ( 𝐴 +o 𝑥 ) = 𝐵 → ( 𝐴 ⊆ ( 𝐴 +o 𝑥 ) ↔ 𝐴 ⊆ 𝐵 ) ) | |
| 89 | 87 88 | syl5ibcom | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝑥 ∈ ω ) → ( ( 𝐴 +o 𝑥 ) = 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
| 90 | 89 | rexlimdva | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
| 91 | 85 90 | impbid | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 ) ) |