This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: syl2an with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl2an2.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| syl2an2.2 | ⊢ ( ( 𝜒 ∧ 𝜑 ) → 𝜃 ) | ||
| syl2an2.3 | ⊢ ( ( 𝜓 ∧ 𝜃 ) → 𝜏 ) | ||
| Assertion | syl2an2 | ⊢ ( ( 𝜒 ∧ 𝜑 ) → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an2.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| 2 | syl2an2.2 | ⊢ ( ( 𝜒 ∧ 𝜑 ) → 𝜃 ) | |
| 3 | syl2an2.3 | ⊢ ( ( 𝜓 ∧ 𝜃 ) → 𝜏 ) | |
| 4 | 1 | adantl | ⊢ ( ( 𝜒 ∧ 𝜑 ) → 𝜓 ) |
| 5 | 4 2 3 | syl2anc | ⊢ ( ( 𝜒 ∧ 𝜑 ) → 𝜏 ) |