This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subclass relationship between two ordinal classes is inherited by their successors. (Contributed by NM, 4-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordsucsssuc | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsucelsuc | ⊢ ( Ord 𝐴 → ( 𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ suc 𝐴 ) ) | |
| 2 | 1 | notbid | ⊢ ( Ord 𝐴 → ( ¬ 𝐵 ∈ 𝐴 ↔ ¬ suc 𝐵 ∈ suc 𝐴 ) ) |
| 3 | 2 | adantr | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ¬ 𝐵 ∈ 𝐴 ↔ ¬ suc 𝐵 ∈ suc 𝐴 ) ) |
| 4 | ordtri1 | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴 ) ) | |
| 5 | ordsuc | ⊢ ( Ord 𝐴 ↔ Ord suc 𝐴 ) | |
| 6 | ordsuc | ⊢ ( Ord 𝐵 ↔ Ord suc 𝐵 ) | |
| 7 | ordtri1 | ⊢ ( ( Ord suc 𝐴 ∧ Ord suc 𝐵 ) → ( suc 𝐴 ⊆ suc 𝐵 ↔ ¬ suc 𝐵 ∈ suc 𝐴 ) ) | |
| 8 | 5 6 7 | syl2anb | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( suc 𝐴 ⊆ suc 𝐵 ↔ ¬ suc 𝐵 ∈ suc 𝐴 ) ) |
| 9 | 3 4 8 | 3bitr4d | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵 ) ) |