This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is at most one left additive inverse for natural number addition. (Contributed by Scott Fenton, 17-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnasmo | ⊢ ( 𝐴 ∈ ω → ∃* 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3 | ⊢ ( ( ( 𝐴 +o 𝑥 ) = 𝐵 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝑦 ) ) | |
| 2 | nnacan | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝑦 ) ↔ 𝑥 = 𝑦 ) ) | |
| 3 | 1 2 | imbitrid | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( ( 𝐴 +o 𝑥 ) = 𝐵 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) → 𝑥 = 𝑦 ) ) |
| 4 | 3 | 3expb | ⊢ ( ( 𝐴 ∈ ω ∧ ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) ) → ( ( ( 𝐴 +o 𝑥 ) = 𝐵 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) → 𝑥 = 𝑦 ) ) |
| 5 | 4 | ralrimivva | ⊢ ( 𝐴 ∈ ω → ∀ 𝑥 ∈ ω ∀ 𝑦 ∈ ω ( ( ( 𝐴 +o 𝑥 ) = 𝐵 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) → 𝑥 = 𝑦 ) ) |
| 6 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝑦 ) ) | |
| 7 | 6 | eqeq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 +o 𝑥 ) = 𝐵 ↔ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) |
| 8 | 7 | rmo4 | ⊢ ( ∃* 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 ↔ ∀ 𝑥 ∈ ω ∀ 𝑦 ∈ ω ( ( ( 𝐴 +o 𝑥 ) = 𝐵 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) → 𝑥 = 𝑦 ) ) |
| 9 | 5 8 | sylibr | ⊢ ( 𝐴 ∈ ω → ∃* 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 ) |