This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for membership in the difference of _om and a nonzero finite ordinal. (Contributed by Scott Fenton, 24-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldifsucnn | ⊢ ( 𝐴 ∈ ω → ( 𝐵 ∈ ( ω ∖ suc 𝐴 ) ↔ ∃ 𝑥 ∈ ( ω ∖ 𝐴 ) 𝐵 = suc 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2 | ⊢ ( 𝐴 ∈ ω → suc 𝐴 ∈ ω ) | |
| 2 | nnawordex | ⊢ ( ( suc 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( suc 𝐴 ⊆ 𝐵 ↔ ∃ 𝑦 ∈ ω ( suc 𝐴 +o 𝑦 ) = 𝐵 ) ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( suc 𝐴 ⊆ 𝐵 ↔ ∃ 𝑦 ∈ ω ( suc 𝐴 +o 𝑦 ) = 𝐵 ) ) |
| 4 | nnacl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 +o 𝑦 ) ∈ ω ) | |
| 5 | nnaword1 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → 𝐴 ⊆ ( 𝐴 +o 𝑦 ) ) | |
| 6 | nnasuc | ⊢ ( ( 𝑦 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝑦 +o suc 𝐴 ) = suc ( 𝑦 +o 𝐴 ) ) | |
| 7 | 6 | ancoms | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝑦 +o suc 𝐴 ) = suc ( 𝑦 +o 𝐴 ) ) |
| 8 | nnacom | ⊢ ( ( suc 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝐴 +o 𝑦 ) = ( 𝑦 +o suc 𝐴 ) ) | |
| 9 | 1 8 | sylan | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝐴 +o 𝑦 ) = ( 𝑦 +o suc 𝐴 ) ) |
| 10 | nnacom | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 +o 𝑦 ) = ( 𝑦 +o 𝐴 ) ) | |
| 11 | suceq | ⊢ ( ( 𝐴 +o 𝑦 ) = ( 𝑦 +o 𝐴 ) → suc ( 𝐴 +o 𝑦 ) = suc ( 𝑦 +o 𝐴 ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → suc ( 𝐴 +o 𝑦 ) = suc ( 𝑦 +o 𝐴 ) ) |
| 13 | 7 9 12 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝐴 +o 𝑦 ) = suc ( 𝐴 +o 𝑦 ) ) |
| 14 | sseq2 | ⊢ ( 𝑥 = ( 𝐴 +o 𝑦 ) → ( 𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ( 𝐴 +o 𝑦 ) ) ) | |
| 15 | suceq | ⊢ ( 𝑥 = ( 𝐴 +o 𝑦 ) → suc 𝑥 = suc ( 𝐴 +o 𝑦 ) ) | |
| 16 | 15 | eqeq2d | ⊢ ( 𝑥 = ( 𝐴 +o 𝑦 ) → ( ( suc 𝐴 +o 𝑦 ) = suc 𝑥 ↔ ( suc 𝐴 +o 𝑦 ) = suc ( 𝐴 +o 𝑦 ) ) ) |
| 17 | 14 16 | anbi12d | ⊢ ( 𝑥 = ( 𝐴 +o 𝑦 ) → ( ( 𝐴 ⊆ 𝑥 ∧ ( suc 𝐴 +o 𝑦 ) = suc 𝑥 ) ↔ ( 𝐴 ⊆ ( 𝐴 +o 𝑦 ) ∧ ( suc 𝐴 +o 𝑦 ) = suc ( 𝐴 +o 𝑦 ) ) ) ) |
| 18 | 17 | rspcev | ⊢ ( ( ( 𝐴 +o 𝑦 ) ∈ ω ∧ ( 𝐴 ⊆ ( 𝐴 +o 𝑦 ) ∧ ( suc 𝐴 +o 𝑦 ) = suc ( 𝐴 +o 𝑦 ) ) ) → ∃ 𝑥 ∈ ω ( 𝐴 ⊆ 𝑥 ∧ ( suc 𝐴 +o 𝑦 ) = suc 𝑥 ) ) |
| 19 | 4 5 13 18 | syl12anc | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ∃ 𝑥 ∈ ω ( 𝐴 ⊆ 𝑥 ∧ ( suc 𝐴 +o 𝑦 ) = suc 𝑥 ) ) |
| 20 | eqeq1 | ⊢ ( ( suc 𝐴 +o 𝑦 ) = 𝐵 → ( ( suc 𝐴 +o 𝑦 ) = suc 𝑥 ↔ 𝐵 = suc 𝑥 ) ) | |
| 21 | 20 | anbi2d | ⊢ ( ( suc 𝐴 +o 𝑦 ) = 𝐵 → ( ( 𝐴 ⊆ 𝑥 ∧ ( suc 𝐴 +o 𝑦 ) = suc 𝑥 ) ↔ ( 𝐴 ⊆ 𝑥 ∧ 𝐵 = suc 𝑥 ) ) ) |
| 22 | 21 | rexbidv | ⊢ ( ( suc 𝐴 +o 𝑦 ) = 𝐵 → ( ∃ 𝑥 ∈ ω ( 𝐴 ⊆ 𝑥 ∧ ( suc 𝐴 +o 𝑦 ) = suc 𝑥 ) ↔ ∃ 𝑥 ∈ ω ( 𝐴 ⊆ 𝑥 ∧ 𝐵 = suc 𝑥 ) ) ) |
| 23 | 19 22 | syl5ibcom | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( suc 𝐴 +o 𝑦 ) = 𝐵 → ∃ 𝑥 ∈ ω ( 𝐴 ⊆ 𝑥 ∧ 𝐵 = suc 𝑥 ) ) ) |
| 24 | 23 | rexlimdva | ⊢ ( 𝐴 ∈ ω → ( ∃ 𝑦 ∈ ω ( suc 𝐴 +o 𝑦 ) = 𝐵 → ∃ 𝑥 ∈ ω ( 𝐴 ⊆ 𝑥 ∧ 𝐵 = suc 𝑥 ) ) ) |
| 25 | 24 | adantr | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ∃ 𝑦 ∈ ω ( suc 𝐴 +o 𝑦 ) = 𝐵 → ∃ 𝑥 ∈ ω ( 𝐴 ⊆ 𝑥 ∧ 𝐵 = suc 𝑥 ) ) ) |
| 26 | 3 25 | sylbid | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( suc 𝐴 ⊆ 𝐵 → ∃ 𝑥 ∈ ω ( 𝐴 ⊆ 𝑥 ∧ 𝐵 = suc 𝑥 ) ) ) |
| 27 | 26 | expimpd | ⊢ ( 𝐴 ∈ ω → ( ( 𝐵 ∈ ω ∧ suc 𝐴 ⊆ 𝐵 ) → ∃ 𝑥 ∈ ω ( 𝐴 ⊆ 𝑥 ∧ 𝐵 = suc 𝑥 ) ) ) |
| 28 | peano2 | ⊢ ( 𝑥 ∈ ω → suc 𝑥 ∈ ω ) | |
| 29 | 28 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) ∧ 𝐴 ⊆ 𝑥 ) → suc 𝑥 ∈ ω ) |
| 30 | nnord | ⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) | |
| 31 | nnord | ⊢ ( 𝑥 ∈ ω → Ord 𝑥 ) | |
| 32 | ordsucsssuc | ⊢ ( ( Ord 𝐴 ∧ Ord 𝑥 ) → ( 𝐴 ⊆ 𝑥 ↔ suc 𝐴 ⊆ suc 𝑥 ) ) | |
| 33 | 30 31 32 | syl2an | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( 𝐴 ⊆ 𝑥 ↔ suc 𝐴 ⊆ suc 𝑥 ) ) |
| 34 | 33 | biimpa | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) ∧ 𝐴 ⊆ 𝑥 ) → suc 𝐴 ⊆ suc 𝑥 ) |
| 35 | 29 34 | jca | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) ∧ 𝐴 ⊆ 𝑥 ) → ( suc 𝑥 ∈ ω ∧ suc 𝐴 ⊆ suc 𝑥 ) ) |
| 36 | eleq1 | ⊢ ( 𝐵 = suc 𝑥 → ( 𝐵 ∈ ω ↔ suc 𝑥 ∈ ω ) ) | |
| 37 | sseq2 | ⊢ ( 𝐵 = suc 𝑥 → ( suc 𝐴 ⊆ 𝐵 ↔ suc 𝐴 ⊆ suc 𝑥 ) ) | |
| 38 | 36 37 | anbi12d | ⊢ ( 𝐵 = suc 𝑥 → ( ( 𝐵 ∈ ω ∧ suc 𝐴 ⊆ 𝐵 ) ↔ ( suc 𝑥 ∈ ω ∧ suc 𝐴 ⊆ suc 𝑥 ) ) ) |
| 39 | 35 38 | syl5ibrcom | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) ∧ 𝐴 ⊆ 𝑥 ) → ( 𝐵 = suc 𝑥 → ( 𝐵 ∈ ω ∧ suc 𝐴 ⊆ 𝐵 ) ) ) |
| 40 | 39 | expimpd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( ( 𝐴 ⊆ 𝑥 ∧ 𝐵 = suc 𝑥 ) → ( 𝐵 ∈ ω ∧ suc 𝐴 ⊆ 𝐵 ) ) ) |
| 41 | 40 | rexlimdva | ⊢ ( 𝐴 ∈ ω → ( ∃ 𝑥 ∈ ω ( 𝐴 ⊆ 𝑥 ∧ 𝐵 = suc 𝑥 ) → ( 𝐵 ∈ ω ∧ suc 𝐴 ⊆ 𝐵 ) ) ) |
| 42 | 27 41 | impbid | ⊢ ( 𝐴 ∈ ω → ( ( 𝐵 ∈ ω ∧ suc 𝐴 ⊆ 𝐵 ) ↔ ∃ 𝑥 ∈ ω ( 𝐴 ⊆ 𝑥 ∧ 𝐵 = suc 𝑥 ) ) ) |
| 43 | eldif | ⊢ ( 𝐵 ∈ ( ω ∖ suc 𝐴 ) ↔ ( 𝐵 ∈ ω ∧ ¬ 𝐵 ∈ suc 𝐴 ) ) | |
| 44 | nnord | ⊢ ( suc 𝐴 ∈ ω → Ord suc 𝐴 ) | |
| 45 | 1 44 | syl | ⊢ ( 𝐴 ∈ ω → Ord suc 𝐴 ) |
| 46 | nnord | ⊢ ( 𝐵 ∈ ω → Ord 𝐵 ) | |
| 47 | ordtri1 | ⊢ ( ( Ord suc 𝐴 ∧ Ord 𝐵 ) → ( suc 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴 ) ) | |
| 48 | 45 46 47 | syl2an | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( suc 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴 ) ) |
| 49 | 48 | pm5.32da | ⊢ ( 𝐴 ∈ ω → ( ( 𝐵 ∈ ω ∧ suc 𝐴 ⊆ 𝐵 ) ↔ ( 𝐵 ∈ ω ∧ ¬ 𝐵 ∈ suc 𝐴 ) ) ) |
| 50 | 43 49 | bitr4id | ⊢ ( 𝐴 ∈ ω → ( 𝐵 ∈ ( ω ∖ suc 𝐴 ) ↔ ( 𝐵 ∈ ω ∧ suc 𝐴 ⊆ 𝐵 ) ) ) |
| 51 | eldif | ⊢ ( 𝑥 ∈ ( ω ∖ 𝐴 ) ↔ ( 𝑥 ∈ ω ∧ ¬ 𝑥 ∈ 𝐴 ) ) | |
| 52 | 51 | anbi1i | ⊢ ( ( 𝑥 ∈ ( ω ∖ 𝐴 ) ∧ 𝐵 = suc 𝑥 ) ↔ ( ( 𝑥 ∈ ω ∧ ¬ 𝑥 ∈ 𝐴 ) ∧ 𝐵 = suc 𝑥 ) ) |
| 53 | anass | ⊢ ( ( ( 𝑥 ∈ ω ∧ ¬ 𝑥 ∈ 𝐴 ) ∧ 𝐵 = suc 𝑥 ) ↔ ( 𝑥 ∈ ω ∧ ( ¬ 𝑥 ∈ 𝐴 ∧ 𝐵 = suc 𝑥 ) ) ) | |
| 54 | 52 53 | bitri | ⊢ ( ( 𝑥 ∈ ( ω ∖ 𝐴 ) ∧ 𝐵 = suc 𝑥 ) ↔ ( 𝑥 ∈ ω ∧ ( ¬ 𝑥 ∈ 𝐴 ∧ 𝐵 = suc 𝑥 ) ) ) |
| 55 | 54 | rexbii2 | ⊢ ( ∃ 𝑥 ∈ ( ω ∖ 𝐴 ) 𝐵 = suc 𝑥 ↔ ∃ 𝑥 ∈ ω ( ¬ 𝑥 ∈ 𝐴 ∧ 𝐵 = suc 𝑥 ) ) |
| 56 | ordtri1 | ⊢ ( ( Ord 𝐴 ∧ Ord 𝑥 ) → ( 𝐴 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐴 ) ) | |
| 57 | 30 31 56 | syl2an | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( 𝐴 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐴 ) ) |
| 58 | 57 | anbi1d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( ( 𝐴 ⊆ 𝑥 ∧ 𝐵 = suc 𝑥 ) ↔ ( ¬ 𝑥 ∈ 𝐴 ∧ 𝐵 = suc 𝑥 ) ) ) |
| 59 | 58 | rexbidva | ⊢ ( 𝐴 ∈ ω → ( ∃ 𝑥 ∈ ω ( 𝐴 ⊆ 𝑥 ∧ 𝐵 = suc 𝑥 ) ↔ ∃ 𝑥 ∈ ω ( ¬ 𝑥 ∈ 𝐴 ∧ 𝐵 = suc 𝑥 ) ) ) |
| 60 | 55 59 | bitr4id | ⊢ ( 𝐴 ∈ ω → ( ∃ 𝑥 ∈ ( ω ∖ 𝐴 ) 𝐵 = suc 𝑥 ↔ ∃ 𝑥 ∈ ω ( 𝐴 ⊆ 𝑥 ∧ 𝐵 = suc 𝑥 ) ) ) |
| 61 | 42 50 60 | 3bitr4d | ⊢ ( 𝐴 ∈ ω → ( 𝐵 ∈ ( ω ∖ suc 𝐴 ) ↔ ∃ 𝑥 ∈ ( ω ∖ 𝐴 ) 𝐵 = suc 𝑥 ) ) |