This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: This theorem shows a condition that allows to represent a descriptor with a class expression B . (Contributed by NM, 23-Aug-2011) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | riota2f.1 | ⊢ Ⅎ 𝑥 𝐵 | |
| riota2f.2 | ⊢ Ⅎ 𝑥 𝜓 | ||
| riota2f.3 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | riota2f | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ ∃! 𝑥 ∈ 𝐴 𝜑 ) → ( 𝜓 ↔ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riota2f.1 | ⊢ Ⅎ 𝑥 𝐵 | |
| 2 | riota2f.2 | ⊢ Ⅎ 𝑥 𝜓 | |
| 3 | riota2f.3 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | 1 | nfel1 | ⊢ Ⅎ 𝑥 𝐵 ∈ 𝐴 |
| 5 | 1 | a1i | ⊢ ( 𝐵 ∈ 𝐴 → Ⅎ 𝑥 𝐵 ) |
| 6 | 2 | a1i | ⊢ ( 𝐵 ∈ 𝐴 → Ⅎ 𝑥 𝜓 ) |
| 7 | id | ⊢ ( 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) | |
| 8 | 3 | adantl | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝑥 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) |
| 9 | 4 5 6 7 8 | riota2df | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ ∃! 𝑥 ∈ 𝐴 𝜑 ) → ( 𝜓 ↔ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = 𝐵 ) ) |