This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition with successor. Theorem 4I(A2) of Enderton p. 79. (Contributed by NM, 20-Sep-1995) (Revised by Mario Carneiro, 14-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnasuc | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o suc 𝐵 ) = suc ( 𝐴 +o 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) | |
| 2 | onasuc | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 +o suc 𝐵 ) = suc ( 𝐴 +o 𝐵 ) ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o suc 𝐵 ) = suc ( 𝐴 +o 𝐵 ) ) |