This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for addition of natural numbers. (Contributed by NM, 27-Oct-1995) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnacan | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐴 +o 𝐵 ) = ( 𝐴 +o 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnaword | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝐵 ⊆ 𝐶 ↔ ( 𝐴 +o 𝐵 ) ⊆ ( 𝐴 +o 𝐶 ) ) ) | |
| 2 | 1 | 3comr | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐵 ⊆ 𝐶 ↔ ( 𝐴 +o 𝐵 ) ⊆ ( 𝐴 +o 𝐶 ) ) ) |
| 3 | nnaword | ⊢ ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝐶 ⊆ 𝐵 ↔ ( 𝐴 +o 𝐶 ) ⊆ ( 𝐴 +o 𝐵 ) ) ) | |
| 4 | 3 | 3com13 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐶 ⊆ 𝐵 ↔ ( 𝐴 +o 𝐶 ) ⊆ ( 𝐴 +o 𝐵 ) ) ) |
| 5 | 2 4 | anbi12d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ↔ ( ( 𝐴 +o 𝐵 ) ⊆ ( 𝐴 +o 𝐶 ) ∧ ( 𝐴 +o 𝐶 ) ⊆ ( 𝐴 +o 𝐵 ) ) ) ) |
| 6 | 5 | bicomd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( ( 𝐴 +o 𝐵 ) ⊆ ( 𝐴 +o 𝐶 ) ∧ ( 𝐴 +o 𝐶 ) ⊆ ( 𝐴 +o 𝐵 ) ) ↔ ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ) ) |
| 7 | eqss | ⊢ ( ( 𝐴 +o 𝐵 ) = ( 𝐴 +o 𝐶 ) ↔ ( ( 𝐴 +o 𝐵 ) ⊆ ( 𝐴 +o 𝐶 ) ∧ ( 𝐴 +o 𝐶 ) ⊆ ( 𝐴 +o 𝐵 ) ) ) | |
| 8 | eqss | ⊢ ( 𝐵 = 𝐶 ↔ ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ) | |
| 9 | 6 7 8 | 3bitr4g | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐴 +o 𝐵 ) = ( 𝐴 +o 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |