This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of addition of natural numbers. Proposition 8.9 of TakeutiZaring p. 59. Theorem 2.20 of Schloeder p. 6. (Contributed by NM, 20-Sep-1995) (Proof shortened by Andrew Salmon, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnacl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o 𝐵 ) ∈ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝐵 ) ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 +o 𝑥 ) ∈ ω ↔ ( 𝐴 +o 𝐵 ) ∈ ω ) ) |
| 3 | 2 | imbi2d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ ω → ( 𝐴 +o 𝑥 ) ∈ ω ) ↔ ( 𝐴 ∈ ω → ( 𝐴 +o 𝐵 ) ∈ ω ) ) ) |
| 4 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o ∅ ) ) | |
| 5 | 4 | eleq1d | ⊢ ( 𝑥 = ∅ → ( ( 𝐴 +o 𝑥 ) ∈ ω ↔ ( 𝐴 +o ∅ ) ∈ ω ) ) |
| 6 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝑦 ) ) | |
| 7 | 6 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 +o 𝑥 ) ∈ ω ↔ ( 𝐴 +o 𝑦 ) ∈ ω ) ) |
| 8 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o suc 𝑦 ) ) | |
| 9 | 8 | eleq1d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 +o 𝑥 ) ∈ ω ↔ ( 𝐴 +o suc 𝑦 ) ∈ ω ) ) |
| 10 | nna0 | ⊢ ( 𝐴 ∈ ω → ( 𝐴 +o ∅ ) = 𝐴 ) | |
| 11 | 10 | eleq1d | ⊢ ( 𝐴 ∈ ω → ( ( 𝐴 +o ∅ ) ∈ ω ↔ 𝐴 ∈ ω ) ) |
| 12 | 11 | ibir | ⊢ ( 𝐴 ∈ ω → ( 𝐴 +o ∅ ) ∈ ω ) |
| 13 | peano2 | ⊢ ( ( 𝐴 +o 𝑦 ) ∈ ω → suc ( 𝐴 +o 𝑦 ) ∈ ω ) | |
| 14 | nnasuc | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 +o suc 𝑦 ) = suc ( 𝐴 +o 𝑦 ) ) | |
| 15 | 14 | eleq1d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 +o suc 𝑦 ) ∈ ω ↔ suc ( 𝐴 +o 𝑦 ) ∈ ω ) ) |
| 16 | 13 15 | imbitrrid | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 +o 𝑦 ) ∈ ω → ( 𝐴 +o suc 𝑦 ) ∈ ω ) ) |
| 17 | 16 | expcom | ⊢ ( 𝑦 ∈ ω → ( 𝐴 ∈ ω → ( ( 𝐴 +o 𝑦 ) ∈ ω → ( 𝐴 +o suc 𝑦 ) ∈ ω ) ) ) |
| 18 | 5 7 9 12 17 | finds2 | ⊢ ( 𝑥 ∈ ω → ( 𝐴 ∈ ω → ( 𝐴 +o 𝑥 ) ∈ ω ) ) |
| 19 | 3 18 | vtoclga | ⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ ω → ( 𝐴 +o 𝐵 ) ∈ ω ) ) |
| 20 | 19 | impcom | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o 𝐵 ) ∈ ω ) |