This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Antiautomorphic property of the reversal operation. (Contributed by Stefan O'Rear, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | revccat | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( reverse ‘ ( 𝑆 ++ 𝑇 ) ) = ( ( reverse ‘ 𝑇 ) ++ ( reverse ‘ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatcl | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( 𝑆 ++ 𝑇 ) ∈ Word 𝐴 ) | |
| 2 | revcl | ⊢ ( ( 𝑆 ++ 𝑇 ) ∈ Word 𝐴 → ( reverse ‘ ( 𝑆 ++ 𝑇 ) ) ∈ Word 𝐴 ) | |
| 3 | wrdfn | ⊢ ( ( reverse ‘ ( 𝑆 ++ 𝑇 ) ) ∈ Word 𝐴 → ( reverse ‘ ( 𝑆 ++ 𝑇 ) ) Fn ( 0 ..^ ( ♯ ‘ ( reverse ‘ ( 𝑆 ++ 𝑇 ) ) ) ) ) | |
| 4 | 1 2 3 | 3syl | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( reverse ‘ ( 𝑆 ++ 𝑇 ) ) Fn ( 0 ..^ ( ♯ ‘ ( reverse ‘ ( 𝑆 ++ 𝑇 ) ) ) ) ) |
| 5 | revlen | ⊢ ( ( 𝑆 ++ 𝑇 ) ∈ Word 𝐴 → ( ♯ ‘ ( reverse ‘ ( 𝑆 ++ 𝑇 ) ) ) = ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) ) | |
| 6 | 1 5 | syl | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ♯ ‘ ( reverse ‘ ( 𝑆 ++ 𝑇 ) ) ) = ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) ) |
| 7 | ccatlen | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) = ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) | |
| 8 | lencl | ⊢ ( 𝑆 ∈ Word 𝐴 → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) | |
| 9 | 8 | nn0cnd | ⊢ ( 𝑆 ∈ Word 𝐴 → ( ♯ ‘ 𝑆 ) ∈ ℂ ) |
| 10 | lencl | ⊢ ( 𝑇 ∈ Word 𝐴 → ( ♯ ‘ 𝑇 ) ∈ ℕ0 ) | |
| 11 | 10 | nn0cnd | ⊢ ( 𝑇 ∈ Word 𝐴 → ( ♯ ‘ 𝑇 ) ∈ ℂ ) |
| 12 | addcom | ⊢ ( ( ( ♯ ‘ 𝑆 ) ∈ ℂ ∧ ( ♯ ‘ 𝑇 ) ∈ ℂ ) → ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) = ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) | |
| 13 | 9 11 12 | syl2an | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) = ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) |
| 14 | 6 7 13 | 3eqtrd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ♯ ‘ ( reverse ‘ ( 𝑆 ++ 𝑇 ) ) ) = ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) |
| 15 | 14 | oveq2d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( 0 ..^ ( ♯ ‘ ( reverse ‘ ( 𝑆 ++ 𝑇 ) ) ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) |
| 16 | 15 | fneq2d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( reverse ‘ ( 𝑆 ++ 𝑇 ) ) Fn ( 0 ..^ ( ♯ ‘ ( reverse ‘ ( 𝑆 ++ 𝑇 ) ) ) ) ↔ ( reverse ‘ ( 𝑆 ++ 𝑇 ) ) Fn ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) ) |
| 17 | 4 16 | mpbid | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( reverse ‘ ( 𝑆 ++ 𝑇 ) ) Fn ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) |
| 18 | revcl | ⊢ ( 𝑇 ∈ Word 𝐴 → ( reverse ‘ 𝑇 ) ∈ Word 𝐴 ) | |
| 19 | revcl | ⊢ ( 𝑆 ∈ Word 𝐴 → ( reverse ‘ 𝑆 ) ∈ Word 𝐴 ) | |
| 20 | ccatcl | ⊢ ( ( ( reverse ‘ 𝑇 ) ∈ Word 𝐴 ∧ ( reverse ‘ 𝑆 ) ∈ Word 𝐴 ) → ( ( reverse ‘ 𝑇 ) ++ ( reverse ‘ 𝑆 ) ) ∈ Word 𝐴 ) | |
| 21 | 18 19 20 | syl2anr | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( reverse ‘ 𝑇 ) ++ ( reverse ‘ 𝑆 ) ) ∈ Word 𝐴 ) |
| 22 | wrdfn | ⊢ ( ( ( reverse ‘ 𝑇 ) ++ ( reverse ‘ 𝑆 ) ) ∈ Word 𝐴 → ( ( reverse ‘ 𝑇 ) ++ ( reverse ‘ 𝑆 ) ) Fn ( 0 ..^ ( ♯ ‘ ( ( reverse ‘ 𝑇 ) ++ ( reverse ‘ 𝑆 ) ) ) ) ) | |
| 23 | 21 22 | syl | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( reverse ‘ 𝑇 ) ++ ( reverse ‘ 𝑆 ) ) Fn ( 0 ..^ ( ♯ ‘ ( ( reverse ‘ 𝑇 ) ++ ( reverse ‘ 𝑆 ) ) ) ) ) |
| 24 | ccatlen | ⊢ ( ( ( reverse ‘ 𝑇 ) ∈ Word 𝐴 ∧ ( reverse ‘ 𝑆 ) ∈ Word 𝐴 ) → ( ♯ ‘ ( ( reverse ‘ 𝑇 ) ++ ( reverse ‘ 𝑆 ) ) ) = ( ( ♯ ‘ ( reverse ‘ 𝑇 ) ) + ( ♯ ‘ ( reverse ‘ 𝑆 ) ) ) ) | |
| 25 | 18 19 24 | syl2anr | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ♯ ‘ ( ( reverse ‘ 𝑇 ) ++ ( reverse ‘ 𝑆 ) ) ) = ( ( ♯ ‘ ( reverse ‘ 𝑇 ) ) + ( ♯ ‘ ( reverse ‘ 𝑆 ) ) ) ) |
| 26 | revlen | ⊢ ( 𝑇 ∈ Word 𝐴 → ( ♯ ‘ ( reverse ‘ 𝑇 ) ) = ( ♯ ‘ 𝑇 ) ) | |
| 27 | revlen | ⊢ ( 𝑆 ∈ Word 𝐴 → ( ♯ ‘ ( reverse ‘ 𝑆 ) ) = ( ♯ ‘ 𝑆 ) ) | |
| 28 | 26 27 | oveqan12rd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( ♯ ‘ ( reverse ‘ 𝑇 ) ) + ( ♯ ‘ ( reverse ‘ 𝑆 ) ) ) = ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) |
| 29 | 25 28 | eqtrd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ♯ ‘ ( ( reverse ‘ 𝑇 ) ++ ( reverse ‘ 𝑆 ) ) ) = ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) |
| 30 | 29 | oveq2d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( 0 ..^ ( ♯ ‘ ( ( reverse ‘ 𝑇 ) ++ ( reverse ‘ 𝑆 ) ) ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) |
| 31 | 30 | fneq2d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( ( reverse ‘ 𝑇 ) ++ ( reverse ‘ 𝑆 ) ) Fn ( 0 ..^ ( ♯ ‘ ( ( reverse ‘ 𝑇 ) ++ ( reverse ‘ 𝑆 ) ) ) ) ↔ ( ( reverse ‘ 𝑇 ) ++ ( reverse ‘ 𝑆 ) ) Fn ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) ) |
| 32 | 23 31 | mpbid | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( reverse ‘ 𝑇 ) ++ ( reverse ‘ 𝑆 ) ) Fn ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) |
| 33 | id | ⊢ ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) → 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) | |
| 34 | 10 | nn0zd | ⊢ ( 𝑇 ∈ Word 𝐴 → ( ♯ ‘ 𝑇 ) ∈ ℤ ) |
| 35 | 34 | adantl | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ♯ ‘ 𝑇 ) ∈ ℤ ) |
| 36 | fzospliti | ⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ) → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∨ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) ) | |
| 37 | 33 35 36 | syl2anr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∨ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) ) |
| 38 | simpll | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → 𝑆 ∈ Word 𝐴 ) | |
| 39 | simplr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → 𝑇 ∈ Word 𝐴 ) | |
| 40 | fzoval | ⊢ ( ( ♯ ‘ 𝑇 ) ∈ ℤ → ( 0 ..^ ( ♯ ‘ 𝑇 ) ) = ( 0 ... ( ( ♯ ‘ 𝑇 ) − 1 ) ) ) | |
| 41 | 34 40 | syl | ⊢ ( 𝑇 ∈ Word 𝐴 → ( 0 ..^ ( ♯ ‘ 𝑇 ) ) = ( 0 ... ( ( ♯ ‘ 𝑇 ) − 1 ) ) ) |
| 42 | 41 | adantl | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( 0 ..^ ( ♯ ‘ 𝑇 ) ) = ( 0 ... ( ( ♯ ‘ 𝑇 ) − 1 ) ) ) |
| 43 | 42 | eleq2d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ↔ 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑇 ) − 1 ) ) ) ) |
| 44 | 43 | biimpa | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑇 ) − 1 ) ) ) |
| 45 | fznn0sub2 | ⊢ ( 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑇 ) − 1 ) ) → ( ( ( ♯ ‘ 𝑇 ) − 1 ) − 𝑥 ) ∈ ( 0 ... ( ( ♯ ‘ 𝑇 ) − 1 ) ) ) | |
| 46 | 44 45 | syl | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( ( ♯ ‘ 𝑇 ) − 1 ) − 𝑥 ) ∈ ( 0 ... ( ( ♯ ‘ 𝑇 ) − 1 ) ) ) |
| 47 | 41 | ad2antlr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( 0 ..^ ( ♯ ‘ 𝑇 ) ) = ( 0 ... ( ( ♯ ‘ 𝑇 ) − 1 ) ) ) |
| 48 | 46 47 | eleqtrrd | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( ( ♯ ‘ 𝑇 ) − 1 ) − 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) |
| 49 | ccatval3 | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ∧ ( ( ( ♯ ‘ 𝑇 ) − 1 ) − 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ ( ( ( ( ♯ ‘ 𝑇 ) − 1 ) − 𝑥 ) + ( ♯ ‘ 𝑆 ) ) ) = ( 𝑇 ‘ ( ( ( ♯ ‘ 𝑇 ) − 1 ) − 𝑥 ) ) ) | |
| 50 | 38 39 48 49 | syl3anc | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ ( ( ( ( ♯ ‘ 𝑇 ) − 1 ) − 𝑥 ) + ( ♯ ‘ 𝑆 ) ) ) = ( 𝑇 ‘ ( ( ( ♯ ‘ 𝑇 ) − 1 ) − 𝑥 ) ) ) |
| 51 | 7 13 | eqtrd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) = ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) |
| 52 | 51 | oveq1d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) − 1 ) = ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) ) |
| 53 | 11 | adantl | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ♯ ‘ 𝑇 ) ∈ ℂ ) |
| 54 | 9 | adantr | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ♯ ‘ 𝑆 ) ∈ ℂ ) |
| 55 | 1cnd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → 1 ∈ ℂ ) | |
| 56 | 53 54 55 | addsubd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) = ( ( ( ♯ ‘ 𝑇 ) − 1 ) + ( ♯ ‘ 𝑆 ) ) ) |
| 57 | 52 56 | eqtrd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) − 1 ) = ( ( ( ♯ ‘ 𝑇 ) − 1 ) + ( ♯ ‘ 𝑆 ) ) ) |
| 58 | 57 | oveq1d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) − 1 ) − 𝑥 ) = ( ( ( ( ♯ ‘ 𝑇 ) − 1 ) + ( ♯ ‘ 𝑆 ) ) − 𝑥 ) ) |
| 59 | 58 | adantr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) − 1 ) − 𝑥 ) = ( ( ( ( ♯ ‘ 𝑇 ) − 1 ) + ( ♯ ‘ 𝑆 ) ) − 𝑥 ) ) |
| 60 | peano2zm | ⊢ ( ( ♯ ‘ 𝑇 ) ∈ ℤ → ( ( ♯ ‘ 𝑇 ) − 1 ) ∈ ℤ ) | |
| 61 | 34 60 | syl | ⊢ ( 𝑇 ∈ Word 𝐴 → ( ( ♯ ‘ 𝑇 ) − 1 ) ∈ ℤ ) |
| 62 | 61 | zcnd | ⊢ ( 𝑇 ∈ Word 𝐴 → ( ( ♯ ‘ 𝑇 ) − 1 ) ∈ ℂ ) |
| 63 | 62 | ad2antlr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( ♯ ‘ 𝑇 ) − 1 ) ∈ ℂ ) |
| 64 | 9 | ad2antrr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ♯ ‘ 𝑆 ) ∈ ℂ ) |
| 65 | elfzoelz | ⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) → 𝑥 ∈ ℤ ) | |
| 66 | 65 | zcnd | ⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) → 𝑥 ∈ ℂ ) |
| 67 | 66 | adantl | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → 𝑥 ∈ ℂ ) |
| 68 | 63 64 67 | addsubd | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( ( ( ♯ ‘ 𝑇 ) − 1 ) + ( ♯ ‘ 𝑆 ) ) − 𝑥 ) = ( ( ( ( ♯ ‘ 𝑇 ) − 1 ) − 𝑥 ) + ( ♯ ‘ 𝑆 ) ) ) |
| 69 | 59 68 | eqtrd | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) − 1 ) − 𝑥 ) = ( ( ( ( ♯ ‘ 𝑇 ) − 1 ) − 𝑥 ) + ( ♯ ‘ 𝑆 ) ) ) |
| 70 | 69 | fveq2d | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ ( ( ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) − 1 ) − 𝑥 ) ) = ( ( 𝑆 ++ 𝑇 ) ‘ ( ( ( ( ♯ ‘ 𝑇 ) − 1 ) − 𝑥 ) + ( ♯ ‘ 𝑆 ) ) ) ) |
| 71 | revfv | ⊢ ( ( 𝑇 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( reverse ‘ 𝑇 ) ‘ 𝑥 ) = ( 𝑇 ‘ ( ( ( ♯ ‘ 𝑇 ) − 1 ) − 𝑥 ) ) ) | |
| 72 | 71 | adantll | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( reverse ‘ 𝑇 ) ‘ 𝑥 ) = ( 𝑇 ‘ ( ( ( ♯ ‘ 𝑇 ) − 1 ) − 𝑥 ) ) ) |
| 73 | 50 70 72 | 3eqtr4d | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ ( ( ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) − 1 ) − 𝑥 ) ) = ( ( reverse ‘ 𝑇 ) ‘ 𝑥 ) ) |
| 74 | 34 | uzidd | ⊢ ( 𝑇 ∈ Word 𝐴 → ( ♯ ‘ 𝑇 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑇 ) ) ) |
| 75 | uzaddcl | ⊢ ( ( ( ♯ ‘ 𝑇 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑇 ) ) ∧ ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) → ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑇 ) ) ) | |
| 76 | 74 8 75 | syl2anr | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑇 ) ) ) |
| 77 | 51 76 | eqeltrd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑇 ) ) ) |
| 78 | fzoss2 | ⊢ ( ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑇 ) ) → ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ⊆ ( 0 ..^ ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) ) ) | |
| 79 | 77 78 | syl | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ⊆ ( 0 ..^ ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) ) ) |
| 80 | 79 | sselda | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) ) ) |
| 81 | revfv | ⊢ ( ( ( 𝑆 ++ 𝑇 ) ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) ) ) → ( ( reverse ‘ ( 𝑆 ++ 𝑇 ) ) ‘ 𝑥 ) = ( ( 𝑆 ++ 𝑇 ) ‘ ( ( ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) − 1 ) − 𝑥 ) ) ) | |
| 82 | 1 80 81 | syl2an2r | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( reverse ‘ ( 𝑆 ++ 𝑇 ) ) ‘ 𝑥 ) = ( ( 𝑆 ++ 𝑇 ) ‘ ( ( ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) − 1 ) − 𝑥 ) ) ) |
| 83 | 18 | ad2antlr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( reverse ‘ 𝑇 ) ∈ Word 𝐴 ) |
| 84 | 19 | ad2antrr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( reverse ‘ 𝑆 ) ∈ Word 𝐴 ) |
| 85 | 26 | adantl | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ♯ ‘ ( reverse ‘ 𝑇 ) ) = ( ♯ ‘ 𝑇 ) ) |
| 86 | 85 | oveq2d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝑇 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) |
| 87 | 86 | eleq2d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝑇 ) ) ) ↔ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) ) |
| 88 | 87 | biimpar | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝑇 ) ) ) ) |
| 89 | ccatval1 | ⊢ ( ( ( reverse ‘ 𝑇 ) ∈ Word 𝐴 ∧ ( reverse ‘ 𝑆 ) ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝑇 ) ) ) ) → ( ( ( reverse ‘ 𝑇 ) ++ ( reverse ‘ 𝑆 ) ) ‘ 𝑥 ) = ( ( reverse ‘ 𝑇 ) ‘ 𝑥 ) ) | |
| 90 | 83 84 88 89 | syl3anc | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( ( reverse ‘ 𝑇 ) ++ ( reverse ‘ 𝑆 ) ) ‘ 𝑥 ) = ( ( reverse ‘ 𝑇 ) ‘ 𝑥 ) ) |
| 91 | 73 82 90 | 3eqtr4d | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( reverse ‘ ( 𝑆 ++ 𝑇 ) ) ‘ 𝑥 ) = ( ( ( reverse ‘ 𝑇 ) ++ ( reverse ‘ 𝑆 ) ) ‘ 𝑥 ) ) |
| 92 | 8 | nn0zd | ⊢ ( 𝑆 ∈ Word 𝐴 → ( ♯ ‘ 𝑆 ) ∈ ℤ ) |
| 93 | peano2zm | ⊢ ( ( ♯ ‘ 𝑆 ) ∈ ℤ → ( ( ♯ ‘ 𝑆 ) − 1 ) ∈ ℤ ) | |
| 94 | 92 93 | syl | ⊢ ( 𝑆 ∈ Word 𝐴 → ( ( ♯ ‘ 𝑆 ) − 1 ) ∈ ℤ ) |
| 95 | 94 | zcnd | ⊢ ( 𝑆 ∈ Word 𝐴 → ( ( ♯ ‘ 𝑆 ) − 1 ) ∈ ℂ ) |
| 96 | 95 | ad2antrr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → ( ( ♯ ‘ 𝑆 ) − 1 ) ∈ ℂ ) |
| 97 | elfzoelz | ⊢ ( 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) → 𝑥 ∈ ℤ ) | |
| 98 | 97 | zcnd | ⊢ ( 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) → 𝑥 ∈ ℂ ) |
| 99 | 98 | adantl | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → 𝑥 ∈ ℂ ) |
| 100 | 11 | ad2antlr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → ( ♯ ‘ 𝑇 ) ∈ ℂ ) |
| 101 | 96 99 100 | subsub3d | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → ( ( ( ♯ ‘ 𝑆 ) − 1 ) − ( 𝑥 − ( ♯ ‘ 𝑇 ) ) ) = ( ( ( ( ♯ ‘ 𝑆 ) − 1 ) + ( ♯ ‘ 𝑇 ) ) − 𝑥 ) ) |
| 102 | 26 | oveq2d | ⊢ ( 𝑇 ∈ Word 𝐴 → ( 𝑥 − ( ♯ ‘ ( reverse ‘ 𝑇 ) ) ) = ( 𝑥 − ( ♯ ‘ 𝑇 ) ) ) |
| 103 | 102 | oveq2d | ⊢ ( 𝑇 ∈ Word 𝐴 → ( ( ( ♯ ‘ 𝑆 ) − 1 ) − ( 𝑥 − ( ♯ ‘ ( reverse ‘ 𝑇 ) ) ) ) = ( ( ( ♯ ‘ 𝑆 ) − 1 ) − ( 𝑥 − ( ♯ ‘ 𝑇 ) ) ) ) |
| 104 | 103 | ad2antlr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → ( ( ( ♯ ‘ 𝑆 ) − 1 ) − ( 𝑥 − ( ♯ ‘ ( reverse ‘ 𝑇 ) ) ) ) = ( ( ( ♯ ‘ 𝑆 ) − 1 ) − ( 𝑥 − ( ♯ ‘ 𝑇 ) ) ) ) |
| 105 | 7 | oveq1d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) − 1 ) = ( ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) − 1 ) ) |
| 106 | 54 53 55 | addsubd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) − 1 ) = ( ( ( ♯ ‘ 𝑆 ) − 1 ) + ( ♯ ‘ 𝑇 ) ) ) |
| 107 | 105 106 | eqtrd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) − 1 ) = ( ( ( ♯ ‘ 𝑆 ) − 1 ) + ( ♯ ‘ 𝑇 ) ) ) |
| 108 | 107 | oveq1d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) − 1 ) − 𝑥 ) = ( ( ( ( ♯ ‘ 𝑆 ) − 1 ) + ( ♯ ‘ 𝑇 ) ) − 𝑥 ) ) |
| 109 | 108 | adantr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → ( ( ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) − 1 ) − 𝑥 ) = ( ( ( ( ♯ ‘ 𝑆 ) − 1 ) + ( ♯ ‘ 𝑇 ) ) − 𝑥 ) ) |
| 110 | 101 104 109 | 3eqtr4rd | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → ( ( ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) − 1 ) − 𝑥 ) = ( ( ( ♯ ‘ 𝑆 ) − 1 ) − ( 𝑥 − ( ♯ ‘ ( reverse ‘ 𝑇 ) ) ) ) ) |
| 111 | 110 | fveq2d | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → ( 𝑆 ‘ ( ( ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) − 1 ) − 𝑥 ) ) = ( 𝑆 ‘ ( ( ( ♯ ‘ 𝑆 ) − 1 ) − ( 𝑥 − ( ♯ ‘ ( reverse ‘ 𝑇 ) ) ) ) ) ) |
| 112 | simpll | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → 𝑆 ∈ Word 𝐴 ) | |
| 113 | simplr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → 𝑇 ∈ Word 𝐴 ) | |
| 114 | zaddcl | ⊢ ( ( ( ♯ ‘ 𝑇 ) ∈ ℤ ∧ ( ♯ ‘ 𝑆 ) ∈ ℤ ) → ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ∈ ℤ ) | |
| 115 | 34 92 114 | syl2anr | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ∈ ℤ ) |
| 116 | peano2zm | ⊢ ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ∈ ℤ → ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) ∈ ℤ ) | |
| 117 | 115 116 | syl | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) ∈ ℤ ) |
| 118 | fzoval | ⊢ ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ∈ ℤ → ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) = ( ( ♯ ‘ 𝑇 ) ... ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) ) ) | |
| 119 | 115 118 | syl | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) = ( ( ♯ ‘ 𝑇 ) ... ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) ) ) |
| 120 | 119 | eleq2d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ↔ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ... ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) ) ) ) |
| 121 | 120 | biimpa | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ... ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) ) ) |
| 122 | fzrev2i | ⊢ ( ( ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) ∈ ℤ ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ... ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) ) ) → ( ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) − 𝑥 ) ∈ ( ( ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) − ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) ) ... ( ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) − ( ♯ ‘ 𝑇 ) ) ) ) | |
| 123 | 117 121 122 | syl2an2r | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → ( ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) − 𝑥 ) ∈ ( ( ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) − ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) ) ... ( ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) − ( ♯ ‘ 𝑇 ) ) ) ) |
| 124 | 52 | oveq1d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) − 1 ) − 𝑥 ) = ( ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) − 𝑥 ) ) |
| 125 | 124 | adantr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → ( ( ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) − 1 ) − 𝑥 ) = ( ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) − 𝑥 ) ) |
| 126 | 92 | adantr | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ♯ ‘ 𝑆 ) ∈ ℤ ) |
| 127 | fzoval | ⊢ ( ( ♯ ‘ 𝑆 ) ∈ ℤ → ( 0 ..^ ( ♯ ‘ 𝑆 ) ) = ( 0 ... ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) | |
| 128 | 126 127 | syl | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( 0 ..^ ( ♯ ‘ 𝑆 ) ) = ( 0 ... ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) |
| 129 | 117 | zcnd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) ∈ ℂ ) |
| 130 | 129 | subidd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) − ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) ) = 0 ) |
| 131 | addcl | ⊢ ( ( ( ♯ ‘ 𝑇 ) ∈ ℂ ∧ ( ♯ ‘ 𝑆 ) ∈ ℂ ) → ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ∈ ℂ ) | |
| 132 | 11 9 131 | syl2anr | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ∈ ℂ ) |
| 133 | 132 55 53 | sub32d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) − ( ♯ ‘ 𝑇 ) ) = ( ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − ( ♯ ‘ 𝑇 ) ) − 1 ) ) |
| 134 | pncan2 | ⊢ ( ( ( ♯ ‘ 𝑇 ) ∈ ℂ ∧ ( ♯ ‘ 𝑆 ) ∈ ℂ ) → ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − ( ♯ ‘ 𝑇 ) ) = ( ♯ ‘ 𝑆 ) ) | |
| 135 | 11 9 134 | syl2anr | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − ( ♯ ‘ 𝑇 ) ) = ( ♯ ‘ 𝑆 ) ) |
| 136 | 135 | oveq1d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − ( ♯ ‘ 𝑇 ) ) − 1 ) = ( ( ♯ ‘ 𝑆 ) − 1 ) ) |
| 137 | 133 136 | eqtrd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) − ( ♯ ‘ 𝑇 ) ) = ( ( ♯ ‘ 𝑆 ) − 1 ) ) |
| 138 | 130 137 | oveq12d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) − ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) ) ... ( ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) − ( ♯ ‘ 𝑇 ) ) ) = ( 0 ... ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) |
| 139 | 128 138 | eqtr4d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( 0 ..^ ( ♯ ‘ 𝑆 ) ) = ( ( ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) − ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) ) ... ( ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) − ( ♯ ‘ 𝑇 ) ) ) ) |
| 140 | 139 | adantr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → ( 0 ..^ ( ♯ ‘ 𝑆 ) ) = ( ( ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) − ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) ) ... ( ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) − 1 ) − ( ♯ ‘ 𝑇 ) ) ) ) |
| 141 | 123 125 140 | 3eltr4d | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → ( ( ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) − 1 ) − 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) |
| 142 | ccatval1 | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ∧ ( ( ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) − 1 ) − 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ ( ( ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) − 1 ) − 𝑥 ) ) = ( 𝑆 ‘ ( ( ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) − 1 ) − 𝑥 ) ) ) | |
| 143 | 112 113 141 142 | syl3anc | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ ( ( ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) − 1 ) − 𝑥 ) ) = ( 𝑆 ‘ ( ( ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) − 1 ) − 𝑥 ) ) ) |
| 144 | simpl | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → 𝑆 ∈ Word 𝐴 ) | |
| 145 | 102 | ad2antlr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → ( 𝑥 − ( ♯ ‘ ( reverse ‘ 𝑇 ) ) ) = ( 𝑥 − ( ♯ ‘ 𝑇 ) ) ) |
| 146 | id | ⊢ ( 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) → 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) | |
| 147 | fzosubel3 | ⊢ ( ( 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ∧ ( ♯ ‘ 𝑆 ) ∈ ℤ ) → ( 𝑥 − ( ♯ ‘ 𝑇 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) | |
| 148 | 146 126 147 | syl2anr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → ( 𝑥 − ( ♯ ‘ 𝑇 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) |
| 149 | 145 148 | eqeltrd | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → ( 𝑥 − ( ♯ ‘ ( reverse ‘ 𝑇 ) ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) |
| 150 | revfv | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑥 − ( ♯ ‘ ( reverse ‘ 𝑇 ) ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( ( reverse ‘ 𝑆 ) ‘ ( 𝑥 − ( ♯ ‘ ( reverse ‘ 𝑇 ) ) ) ) = ( 𝑆 ‘ ( ( ( ♯ ‘ 𝑆 ) − 1 ) − ( 𝑥 − ( ♯ ‘ ( reverse ‘ 𝑇 ) ) ) ) ) ) | |
| 151 | 144 149 150 | syl2an2r | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → ( ( reverse ‘ 𝑆 ) ‘ ( 𝑥 − ( ♯ ‘ ( reverse ‘ 𝑇 ) ) ) ) = ( 𝑆 ‘ ( ( ( ♯ ‘ 𝑆 ) − 1 ) − ( 𝑥 − ( ♯ ‘ ( reverse ‘ 𝑇 ) ) ) ) ) ) |
| 152 | 111 143 151 | 3eqtr4d | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ ( ( ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) − 1 ) − 𝑥 ) ) = ( ( reverse ‘ 𝑆 ) ‘ ( 𝑥 − ( ♯ ‘ ( reverse ‘ 𝑇 ) ) ) ) ) |
| 153 | fzoss1 | ⊢ ( ( ♯ ‘ 𝑇 ) ∈ ( ℤ≥ ‘ 0 ) → ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) | |
| 154 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 155 | 153 154 | eleq2s | ⊢ ( ( ♯ ‘ 𝑇 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) |
| 156 | 10 155 | syl | ⊢ ( 𝑇 ∈ Word 𝐴 → ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) |
| 157 | 156 | adantl | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) |
| 158 | 51 | oveq2d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( 0 ..^ ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) |
| 159 | 157 158 | sseqtrrd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ⊆ ( 0 ..^ ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) ) ) |
| 160 | 159 | sselda | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) ) ) |
| 161 | 1 160 81 | syl2an2r | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → ( ( reverse ‘ ( 𝑆 ++ 𝑇 ) ) ‘ 𝑥 ) = ( ( 𝑆 ++ 𝑇 ) ‘ ( ( ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) − 1 ) − 𝑥 ) ) ) |
| 162 | 18 | ad2antlr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → ( reverse ‘ 𝑇 ) ∈ Word 𝐴 ) |
| 163 | 19 | ad2antrr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → ( reverse ‘ 𝑆 ) ∈ Word 𝐴 ) |
| 164 | 85 28 | oveq12d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( ( ♯ ‘ ( reverse ‘ 𝑇 ) ) ..^ ( ( ♯ ‘ ( reverse ‘ 𝑇 ) ) + ( ♯ ‘ ( reverse ‘ 𝑆 ) ) ) ) = ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) |
| 165 | 164 | eleq2d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( 𝑥 ∈ ( ( ♯ ‘ ( reverse ‘ 𝑇 ) ) ..^ ( ( ♯ ‘ ( reverse ‘ 𝑇 ) ) + ( ♯ ‘ ( reverse ‘ 𝑆 ) ) ) ) ↔ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) ) |
| 166 | 165 | biimpar | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → 𝑥 ∈ ( ( ♯ ‘ ( reverse ‘ 𝑇 ) ) ..^ ( ( ♯ ‘ ( reverse ‘ 𝑇 ) ) + ( ♯ ‘ ( reverse ‘ 𝑆 ) ) ) ) ) |
| 167 | ccatval2 | ⊢ ( ( ( reverse ‘ 𝑇 ) ∈ Word 𝐴 ∧ ( reverse ‘ 𝑆 ) ∈ Word 𝐴 ∧ 𝑥 ∈ ( ( ♯ ‘ ( reverse ‘ 𝑇 ) ) ..^ ( ( ♯ ‘ ( reverse ‘ 𝑇 ) ) + ( ♯ ‘ ( reverse ‘ 𝑆 ) ) ) ) ) → ( ( ( reverse ‘ 𝑇 ) ++ ( reverse ‘ 𝑆 ) ) ‘ 𝑥 ) = ( ( reverse ‘ 𝑆 ) ‘ ( 𝑥 − ( ♯ ‘ ( reverse ‘ 𝑇 ) ) ) ) ) | |
| 168 | 162 163 166 167 | syl3anc | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → ( ( ( reverse ‘ 𝑇 ) ++ ( reverse ‘ 𝑆 ) ) ‘ 𝑥 ) = ( ( reverse ‘ 𝑆 ) ‘ ( 𝑥 − ( ♯ ‘ ( reverse ‘ 𝑇 ) ) ) ) ) |
| 169 | 152 161 168 | 3eqtr4d | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → ( ( reverse ‘ ( 𝑆 ++ 𝑇 ) ) ‘ 𝑥 ) = ( ( ( reverse ‘ 𝑇 ) ++ ( reverse ‘ 𝑆 ) ) ‘ 𝑥 ) ) |
| 170 | 91 169 | jaodan | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∨ 𝑥 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) ) → ( ( reverse ‘ ( 𝑆 ++ 𝑇 ) ) ‘ 𝑥 ) = ( ( ( reverse ‘ 𝑇 ) ++ ( reverse ‘ 𝑆 ) ) ‘ 𝑥 ) ) |
| 171 | 37 170 | syldan | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑆 ) ) ) ) → ( ( reverse ‘ ( 𝑆 ++ 𝑇 ) ) ‘ 𝑥 ) = ( ( ( reverse ‘ 𝑇 ) ++ ( reverse ‘ 𝑆 ) ) ‘ 𝑥 ) ) |
| 172 | 17 32 171 | eqfnfvd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ) → ( reverse ‘ ( 𝑆 ++ 𝑇 ) ) = ( ( reverse ‘ 𝑇 ) ++ ( reverse ‘ 𝑆 ) ) ) |