This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a symbol in the left half of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 22-Sep-2015) (Proof shortened by AV, 30-Apr-2020) (Revised by JJ, 18-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatval1 | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ 𝐼 ) = ( 𝑆 ‘ 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatfval | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵 ) → ( 𝑆 ++ 𝑇 ) = ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ↦ if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) , ( 𝑆 ‘ 𝑥 ) , ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ) ) ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 ++ 𝑇 ) = ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ↦ if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) , ( 𝑆 ‘ 𝑥 ) , ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ) ) ) |
| 3 | eleq1 | ⊢ ( 𝑥 = 𝐼 → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ↔ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) ) | |
| 4 | fveq2 | ⊢ ( 𝑥 = 𝐼 → ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ 𝐼 ) ) | |
| 5 | fvoveq1 | ⊢ ( 𝑥 = 𝐼 → ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) = ( 𝑇 ‘ ( 𝐼 − ( ♯ ‘ 𝑆 ) ) ) ) | |
| 6 | 3 4 5 | ifbieq12d | ⊢ ( 𝑥 = 𝐼 → if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) , ( 𝑆 ‘ 𝑥 ) , ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ) = if ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) , ( 𝑆 ‘ 𝐼 ) , ( 𝑇 ‘ ( 𝐼 − ( ♯ ‘ 𝑆 ) ) ) ) ) |
| 7 | iftrue | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) → if ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) , ( 𝑆 ‘ 𝐼 ) , ( 𝑇 ‘ ( 𝐼 − ( ♯ ‘ 𝑆 ) ) ) ) = ( 𝑆 ‘ 𝐼 ) ) | |
| 8 | 7 | 3ad2ant3 | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → if ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) , ( 𝑆 ‘ 𝐼 ) , ( 𝑇 ‘ ( 𝐼 − ( ♯ ‘ 𝑆 ) ) ) ) = ( 𝑆 ‘ 𝐼 ) ) |
| 9 | 6 8 | sylan9eqr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) ∧ 𝑥 = 𝐼 ) → if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) , ( 𝑆 ‘ 𝑥 ) , ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ) = ( 𝑆 ‘ 𝐼 ) ) |
| 10 | id | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) → 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) | |
| 11 | lencl | ⊢ ( 𝑇 ∈ Word 𝐵 → ( ♯ ‘ 𝑇 ) ∈ ℕ0 ) | |
| 12 | elfzoext | ⊢ ( ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ∧ ( ♯ ‘ 𝑇 ) ∈ ℕ0 ) → 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) | |
| 13 | 10 11 12 | syl2anr | ⊢ ( ( 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) |
| 14 | 13 | 3adant1 | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) |
| 15 | fvexd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 ‘ 𝐼 ) ∈ V ) | |
| 16 | 2 9 14 15 | fvmptd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ 𝐼 ) = ( 𝑆 ‘ 𝐼 ) ) |