This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzoval | ⊢ ( 𝑁 ∈ ℤ → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝑚 = 𝑀 → 𝑚 = 𝑀 ) | |
| 2 | oveq1 | ⊢ ( 𝑛 = 𝑁 → ( 𝑛 − 1 ) = ( 𝑁 − 1 ) ) | |
| 3 | 1 2 | oveqan12d | ⊢ ( ( 𝑚 = 𝑀 ∧ 𝑛 = 𝑁 ) → ( 𝑚 ... ( 𝑛 − 1 ) ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| 4 | df-fzo | ⊢ ..^ = ( 𝑚 ∈ ℤ , 𝑛 ∈ ℤ ↦ ( 𝑚 ... ( 𝑛 − 1 ) ) ) | |
| 5 | ovex | ⊢ ( 𝑀 ... ( 𝑁 − 1 ) ) ∈ V | |
| 6 | 3 4 5 | ovmpoa | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| 7 | simpl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∈ ℤ ) | |
| 8 | fzof | ⊢ ..^ : ( ℤ × ℤ ) ⟶ 𝒫 ℤ | |
| 9 | 8 | fdmi | ⊢ dom ..^ = ( ℤ × ℤ ) |
| 10 | 9 | ndmov | ⊢ ( ¬ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ..^ 𝑁 ) = ∅ ) |
| 11 | 7 10 | nsyl5 | ⊢ ( ¬ 𝑀 ∈ ℤ → ( 𝑀 ..^ 𝑁 ) = ∅ ) |
| 12 | simpl | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) → 𝑀 ∈ ℤ ) | |
| 13 | fzf | ⊢ ... : ( ℤ × ℤ ) ⟶ 𝒫 ℤ | |
| 14 | 13 | fdmi | ⊢ dom ... = ( ℤ × ℤ ) |
| 15 | 14 | ndmov | ⊢ ( ¬ ( 𝑀 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) → ( 𝑀 ... ( 𝑁 − 1 ) ) = ∅ ) |
| 16 | 12 15 | nsyl5 | ⊢ ( ¬ 𝑀 ∈ ℤ → ( 𝑀 ... ( 𝑁 − 1 ) ) = ∅ ) |
| 17 | 11 16 | eqtr4d | ⊢ ( ¬ 𝑀 ∈ ℤ → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| 18 | 17 | adantr | ⊢ ( ( ¬ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| 19 | 6 18 | pm2.61ian | ⊢ ( 𝑁 ∈ ℤ → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |