This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 29-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzoss2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝑀 ..^ 𝐾 ) ⊆ ( 𝑀 ..^ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → 𝐾 ∈ ℤ ) | |
| 2 | peano2zm | ⊢ ( 𝐾 ∈ ℤ → ( 𝐾 − 1 ) ∈ ℤ ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝐾 − 1 ) ∈ ℤ ) |
| 4 | 1zzd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → 1 ∈ ℤ ) | |
| 5 | id | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) | |
| 6 | 1 | zcnd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → 𝐾 ∈ ℂ ) |
| 7 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 8 | npcan | ⊢ ( ( 𝐾 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐾 − 1 ) + 1 ) = 𝐾 ) | |
| 9 | 6 7 8 | sylancl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → ( ( 𝐾 − 1 ) + 1 ) = 𝐾 ) |
| 10 | 9 | fveq2d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → ( ℤ≥ ‘ ( ( 𝐾 − 1 ) + 1 ) ) = ( ℤ≥ ‘ 𝐾 ) ) |
| 11 | 5 10 | eleqtrrd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → 𝑁 ∈ ( ℤ≥ ‘ ( ( 𝐾 − 1 ) + 1 ) ) ) |
| 12 | eluzsub | ⊢ ( ( ( 𝐾 − 1 ) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( ( 𝐾 − 1 ) + 1 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 − 1 ) ) ) | |
| 13 | 3 4 11 12 | syl3anc | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 − 1 ) ) ) |
| 14 | fzss2 | ⊢ ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 − 1 ) ) → ( 𝑀 ... ( 𝐾 − 1 ) ) ⊆ ( 𝑀 ... ( 𝑁 − 1 ) ) ) | |
| 15 | 13 14 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝑀 ... ( 𝐾 − 1 ) ) ⊆ ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| 16 | fzoval | ⊢ ( 𝐾 ∈ ℤ → ( 𝑀 ..^ 𝐾 ) = ( 𝑀 ... ( 𝐾 − 1 ) ) ) | |
| 17 | 1 16 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝑀 ..^ 𝐾 ) = ( 𝑀 ... ( 𝐾 − 1 ) ) ) |
| 18 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → 𝑁 ∈ ℤ ) | |
| 19 | fzoval | ⊢ ( 𝑁 ∈ ℤ → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) | |
| 20 | 18 19 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| 21 | 15 17 20 | 3sstr4d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝑀 ..^ 𝐾 ) ⊆ ( 𝑀 ..^ 𝑁 ) ) |